A central limit theorem concerning uncertainty in estimates of individual admixture

IF 1.2 4区 生物学 Q4 ECOLOGY
Peter Pfaffelhuber, Angelika Rohde
{"title":"A central limit theorem concerning uncertainty in estimates of individual admixture","authors":"Peter Pfaffelhuber,&nbsp;Angelika Rohde","doi":"10.1016/j.tpb.2022.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of individual admixture (IA) assumes that the genome of individuals is composed of alleles inherited from <span><math><mi>K</mi></math></span> ancestral populations. Each copy of each allele has the same chance <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> to originate from population <span><math><mi>k</mi></math></span>, and together with the allele frequencies <span><math><mi>p</mi></math></span> in all populations at all <span><math><mi>M</mi></math></span> markers, comprises the admixture model. Here, we assume a supervised scheme, i.e. allele frequencies <span><math><mi>p</mi></math></span> are given through a reference database of size <span><math><mi>N</mi></math></span>, and <span><math><mi>q</mi></math></span> is estimated via maximum likelihood for a single sample. We study laws of large numbers and central limit theorems describing effects of finiteness of both, <span><math><mi>M</mi></math></span> and <span><math><mi>N</mi></math></span>, on the estimate of <span><math><mi>q</mi></math></span>. We recall results for the effect of finite <span><math><mi>M</mi></math></span>, and provide a central limit theorem for the effect of finite <span><math><mi>N</mi></math></span>, introduce a new way to express the uncertainty in estimates in standard barplots, give simulation results, and discuss applications in forensic genetics.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"148 ","pages":"Pages 28-39"},"PeriodicalIF":1.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580922000661","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of individual admixture (IA) assumes that the genome of individuals is composed of alleles inherited from K ancestral populations. Each copy of each allele has the same chance qk to originate from population k, and together with the allele frequencies p in all populations at all M markers, comprises the admixture model. Here, we assume a supervised scheme, i.e. allele frequencies p are given through a reference database of size N, and q is estimated via maximum likelihood for a single sample. We study laws of large numbers and central limit theorems describing effects of finiteness of both, M and N, on the estimate of q. We recall results for the effect of finite M, and provide a central limit theorem for the effect of finite N, introduce a new way to express the uncertainty in estimates in standard barplots, give simulation results, and discuss applications in forensic genetics.

关于单个外加剂估计不确定性的中心极限定理
个体混合(IA)的概念假定个体的基因组是由遗传自K祖先群体的等位基因组成的。每个等位基因的每个拷贝都有相同的机会qk来自种群k,并与所有M个标记上所有种群的等位基因频率p一起构成外合模型。在这里,我们假设一个有监督的方案,即等位基因频率p是通过大小为N的参考数据库给出的,而q是通过单个样本的最大似然来估计的。我们研究了大数定律和描述M和N的有限性对q估计的影响的中心极限定理。我们回顾了有限M影响的结果,并提供了有限N影响的中心极限定理,引入了一种新的方法来表达标准条形图中估计的不确定性,给出了模拟结果,并讨论了在法医遗传学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Population Biology
Theoretical Population Biology 生物-进化生物学
CiteScore
2.50
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena. Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信