Vincent Painchaud, Nicolas Doyon, Patrick Desrosiers
{"title":"Beyond Wilson-Cowan dynamics: oscillations and chaos without inhibition.","authors":"Vincent Painchaud, Nicolas Doyon, Patrick Desrosiers","doi":"10.1007/s00422-022-00941-w","DOIUrl":null,"url":null,"abstract":"<p><p>Fifty years ago, Wilson and Cowan developed a mathematical model to describe the activity of neural populations. In this seminal work, they divided the cells in three groups: active, sensitive and refractory, and obtained a dynamical system to describe the evolution of the average firing rates of the populations. In the present work, we investigate the impact of the often neglected refractory state and show that taking it into account can introduce new dynamics. Starting from a continuous-time Markov chain, we perform a rigorous derivation of a mean-field model that includes the refractory fractions of populations as dynamical variables. Then, we perform bifurcation analysis to explain the occurrence of periodic solutions in cases where the classical Wilson-Cowan does not predict oscillations. We also show that our mean-field model is able to predict chaotic behavior in the dynamics of networks with as little as two populations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691500/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-022-00941-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Fifty years ago, Wilson and Cowan developed a mathematical model to describe the activity of neural populations. In this seminal work, they divided the cells in three groups: active, sensitive and refractory, and obtained a dynamical system to describe the evolution of the average firing rates of the populations. In the present work, we investigate the impact of the often neglected refractory state and show that taking it into account can introduce new dynamics. Starting from a continuous-time Markov chain, we perform a rigorous derivation of a mean-field model that includes the refractory fractions of populations as dynamical variables. Then, we perform bifurcation analysis to explain the occurrence of periodic solutions in cases where the classical Wilson-Cowan does not predict oscillations. We also show that our mean-field model is able to predict chaotic behavior in the dynamics of networks with as little as two populations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.