Pablo Scleidorovich, Alfredo Weitzenfeld, Jean-Marc Fellous, Peter Ford Dominey
{"title":"Integration of velocity-dependent spatio-temporal structure of place cell activation during navigation in a reservoir model of prefrontal cortex.","authors":"Pablo Scleidorovich, Alfredo Weitzenfeld, Jean-Marc Fellous, Peter Ford Dominey","doi":"10.1007/s00422-022-00945-6","DOIUrl":null,"url":null,"abstract":"<p><p>Sequential behavior unfolds both in space and in time. The same spatial trajectory can be realized in different manners in the same overall time by changing instantaneous speeds. The current research investigates how speed profiles might be given behavioral significance and how cortical networks might encode this information. We first demonstrate that rats can associate different speed patterns on the same trajectory with distinct behavioral choices. In this novel experimental paradigm, rats follow a small baited robot in a large megaspace environment where the rat's speed is precisely controlled by the robot's speed. Based on this proof of concept and research showing that recurrent reservoir networks are ideal for representing spatio-temporal structures, we then test reservoir networks in simulated navigation contexts and demonstrate they can discriminate between traversals of the same path with identical durations but different speed profiles. We then test the networks in an embodied robotic setup, where we use place cell representations from physically navigating robots as input and again successfully discriminate between traversals. To demonstrate that this capability is inherent to recurrent networks, we compared the model against simple linear integrators. Interestingly, although the linear integrators could also perform the speed profile discrimination, a clear difference emerged when examining information coding in both models. Reservoir neurons displayed a form of statistical mixed selectivity as a complex interaction between spatial location and speed that was not as abundant in the linear integrators. This mixed selectivity is characteristic of cortex and reservoirs and allows us to generate specific predictions about the neural activity that will be recorded in rat cortex in future experiments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-022-00945-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sequential behavior unfolds both in space and in time. The same spatial trajectory can be realized in different manners in the same overall time by changing instantaneous speeds. The current research investigates how speed profiles might be given behavioral significance and how cortical networks might encode this information. We first demonstrate that rats can associate different speed patterns on the same trajectory with distinct behavioral choices. In this novel experimental paradigm, rats follow a small baited robot in a large megaspace environment where the rat's speed is precisely controlled by the robot's speed. Based on this proof of concept and research showing that recurrent reservoir networks are ideal for representing spatio-temporal structures, we then test reservoir networks in simulated navigation contexts and demonstrate they can discriminate between traversals of the same path with identical durations but different speed profiles. We then test the networks in an embodied robotic setup, where we use place cell representations from physically navigating robots as input and again successfully discriminate between traversals. To demonstrate that this capability is inherent to recurrent networks, we compared the model against simple linear integrators. Interestingly, although the linear integrators could also perform the speed profile discrimination, a clear difference emerged when examining information coding in both models. Reservoir neurons displayed a form of statistical mixed selectivity as a complex interaction between spatial location and speed that was not as abundant in the linear integrators. This mixed selectivity is characteristic of cortex and reservoirs and allows us to generate specific predictions about the neural activity that will be recorded in rat cortex in future experiments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.