{"title":"Spectral Embedding Norm: Looking Deep into the Spectrum of the Graph Laplacian.","authors":"Xiuyuan Cheng, Gal Mishne","doi":"10.1137/18m1283160","DOIUrl":null,"url":null,"abstract":"<p><p>The extraction of clusters from a dataset which includes multiple clusters and a significant background component is a non-trivial task of practical importance. In image analysis this manifests for example in anomaly detection and target detection. The traditional spectral clustering algorithm, which relies on the leading <i>K</i> eigenvectors to detect <i>K</i> clusters, fails in such cases. In this paper we propose the <i>spectral embedding norm</i> which sums the squared values of the first <i>I</i> normalized eigenvectors, where <i>I</i> can be significantly larger than <i>K</i>. We prove that this quantity can be used to separate clusters from the background in unbalanced settings, including extreme cases such as outlier detection. The performance of the algorithm is not sensitive to the choice of <i>I</i>, and we demonstrate its application on synthetic and real-world remote sensing and neuroimaging datasets.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"13 2","pages":"1015-1048"},"PeriodicalIF":2.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204716/pdf/nihms-1594853.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/18m1283160","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The extraction of clusters from a dataset which includes multiple clusters and a significant background component is a non-trivial task of practical importance. In image analysis this manifests for example in anomaly detection and target detection. The traditional spectral clustering algorithm, which relies on the leading K eigenvectors to detect K clusters, fails in such cases. In this paper we propose the spectral embedding norm which sums the squared values of the first I normalized eigenvectors, where I can be significantly larger than K. We prove that this quantity can be used to separate clusters from the background in unbalanced settings, including extreme cases such as outlier detection. The performance of the algorithm is not sensitive to the choice of I, and we demonstrate its application on synthetic and real-world remote sensing and neuroimaging datasets.
从包含多个聚类和重要背景成分的数据集中提取聚类是一项非常重要的实际任务。在图像分析中,这体现在异常检测和目标检测等方面。传统的光谱聚类算法依靠前 K 个特征向量来检测 K 个聚类,在这种情况下会失效。在本文中,我们提出了光谱嵌入规范,它是前 I 个归一化特征向量平方值的总和,其中 I 可以比 K 大得多。我们证明,在不平衡的环境中,包括离群点检测等极端情况下,这个量可用于从背景中分离出聚类。该算法的性能对 I 的选择并不敏感,我们在合成和现实世界的遥感和神经成像数据集上演示了该算法的应用。
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.