The contribution of uncharted RNA sequences to tumor identity in lung adenocarcinoma.

NAR Cancer Pub Date : 2022-03-01 DOI:10.1093/narcan/zcac001
Yunfeng Wang, Haoliang Xue, Marine Aglave, Antoine Lainé, Mélina Gallopin, Daniel Gautheret
{"title":"The contribution of uncharted RNA sequences to tumor identity in lung adenocarcinoma.","authors":"Yunfeng Wang,&nbsp;Haoliang Xue,&nbsp;Marine Aglave,&nbsp;Antoine Lainé,&nbsp;Mélina Gallopin,&nbsp;Daniel Gautheret","doi":"10.1093/narcan/zcac001","DOIUrl":null,"url":null,"abstract":"<p><p>The identity of cancer cells is defined by the interplay between genetic, epigenetic transcriptional and post-transcriptional variation. A lot of this variation is present in RNA-seq data and can be captured at once using reference-free, k-mer analysis. An important issue with k-mer analysis, however, is the difficulty of distinguishing signal from noise. Here, we use two independent lung adenocarcinoma datasets to identify all reproducible events at the k-mer level, in a tumor versus normal setting. We find reproducible events in many different locations (introns, intergenic, repeats) and forms (spliced, polyadenylated, chimeric etc.). We systematically analyze events that are ignored in conventional transcriptomics and assess their value as biomarkers and for tumor classification, survival prediction, neoantigen prediction and correlation with the immune microenvironment. We find that unannotated lincRNAs, novel splice variants, endogenous HERV, Line1 and Alu repeats and bacterial RNAs each contribute to different, important aspects of tumor identity. We argue that differential RNA-seq analysis of tumor/normal sample collections would benefit from this type k-mer analysis to cast a wider net on important cancer-related events. The code is available at https://github.com/Transipedia/dekupl-lung-cancer-inter-cohort.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/fe/zcac001.PMC8807116.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcac001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The identity of cancer cells is defined by the interplay between genetic, epigenetic transcriptional and post-transcriptional variation. A lot of this variation is present in RNA-seq data and can be captured at once using reference-free, k-mer analysis. An important issue with k-mer analysis, however, is the difficulty of distinguishing signal from noise. Here, we use two independent lung adenocarcinoma datasets to identify all reproducible events at the k-mer level, in a tumor versus normal setting. We find reproducible events in many different locations (introns, intergenic, repeats) and forms (spliced, polyadenylated, chimeric etc.). We systematically analyze events that are ignored in conventional transcriptomics and assess their value as biomarkers and for tumor classification, survival prediction, neoantigen prediction and correlation with the immune microenvironment. We find that unannotated lincRNAs, novel splice variants, endogenous HERV, Line1 and Alu repeats and bacterial RNAs each contribute to different, important aspects of tumor identity. We argue that differential RNA-seq analysis of tumor/normal sample collections would benefit from this type k-mer analysis to cast a wider net on important cancer-related events. The code is available at https://github.com/Transipedia/dekupl-lung-cancer-inter-cohort.

Abstract Image

Abstract Image

Abstract Image

未知RNA序列对肺腺癌肿瘤鉴定的贡献。
癌细胞的身份是由遗传、表观遗传转录和转录后变异之间的相互作用决定的。许多这种变异存在于RNA-seq数据中,并且可以使用无参考的k-mer分析立即捕获。然而,k-mer分析的一个重要问题是难以区分信号和噪声。在这里,我们使用两个独立的肺腺癌数据集来确定肿瘤与正常环境中k-mer水平的所有可重复事件。我们在许多不同的位置(内含子,基因间,重复)和形式(剪接,聚腺苷化,嵌合等)发现可重复的事件。我们系统地分析了传统转录组学中被忽略的事件,并评估了它们作为生物标志物、肿瘤分类、生存预测、新抗原预测以及与免疫微环境的相关性的价值。我们发现,未加注释的lincRNAs、新型剪接变异体、内源性HERV、Line1和Alu重复序列以及细菌rna都对肿瘤身份的不同重要方面有贡献。我们认为,肿瘤/正常样本收集的差异RNA-seq分析将受益于这种类型的k-mer分析,以更广泛地了解重要的癌症相关事件。代码可在https://github.com/Transipedia/dekupl-lung-cancer-inter-cohort上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信