Smart and versatile biomaterials for cutaneous wound healing.

IF 11.3 1区 医学 Q1 Medicine
Minxiong Li, Wenzheng Xia, Yi Min Khoong, Lujia Huang, Xin Huang, Hsin Liang, Yun Zhao, Jiayi Mao, Haijun Yu, Tao Zan
{"title":"Smart and versatile biomaterials for cutaneous wound healing.","authors":"Minxiong Li, Wenzheng Xia, Yi Min Khoong, Lujia Huang, Xin Huang, Hsin Liang, Yun Zhao, Jiayi Mao, Haijun Yu, Tao Zan","doi":"10.1186/s40824-023-00426-2","DOIUrl":null,"url":null,"abstract":"<p><p>The global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing. In this review, the wound healing processes and features of existing biomaterials are firstly introduced, followed by summarizing the mechanisms of smart responsive materials. Afterwards, recent advances and designs in smart and versatile materials of extensive applications for cutaneous wound healing were submarined. Finally, clinical progresses, challenges and future perspectives of the smart wound dressing are discussed. Overall, by mapping the composition and intrinsic structure of smart responsive materials to their individual needs of cutaneous wounds, with particular attention to the responsive mechanisms, this review is promising to advance further progress in designing smart responsive materials for wounds and drive clinical translation.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"87"},"PeriodicalIF":11.3000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40824-023-00426-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing. In this review, the wound healing processes and features of existing biomaterials are firstly introduced, followed by summarizing the mechanisms of smart responsive materials. Afterwards, recent advances and designs in smart and versatile materials of extensive applications for cutaneous wound healing were submarined. Finally, clinical progresses, challenges and future perspectives of the smart wound dressing are discussed. Overall, by mapping the composition and intrinsic structure of smart responsive materials to their individual needs of cutaneous wounds, with particular attention to the responsive mechanisms, this review is promising to advance further progress in designing smart responsive materials for wounds and drive clinical translation.

用于皮肤伤口愈合的智能多功能生物材料。
全球皮肤伤口的增加给患者和社会带来了巨大的健康和经济负担。尽管改善了伤口愈合效果,但由于复杂的愈合过程,传统的伤口敷料远非理想。智能伤口敷料对伤口状况或环境的变化敏感或相互作用,已被提出作为有效促进伤口愈合的有吸引力的治疗平台。本文首先介绍了现有生物材料的伤口愈合过程和特点,然后对智能响应材料的机制进行了综述。之后,在智能和广泛应用于皮肤伤口愈合的多功能材料的最新进展和设计被潜行。最后讨论了智能创面敷料的临床进展、面临的挑战和未来的展望。总之,通过将智能反应材料的组成和内在结构映射到皮肤伤口的个体需求,特别关注反应机制,本综述有望进一步推进伤口智能反应材料的设计和推动临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Research
Biomaterials Research Medicine-Medicine (miscellaneous)
CiteScore
10.20
自引率
3.50%
发文量
63
审稿时长
30 days
期刊介绍: Biomaterials Research, the official journal of the Korean Society for Biomaterials, is an open-access interdisciplinary publication that focuses on all aspects of biomaterials research. The journal covers a wide range of topics including novel biomaterials, advanced techniques for biomaterial synthesis and fabrication, and their application in biomedical fields. Specific areas of interest include functional biomaterials, drug and gene delivery systems, tissue engineering, nanomedicine, nano/micro-biotechnology, bio-imaging, regenerative medicine, medical devices, 3D printing, and stem cell research. By exploring these research areas, Biomaterials Research aims to provide valuable insights and promote advancements in the biomaterials field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信