Hybridization breaks species barriers in long-term coevolution of a cyanobacterial population.

Gabriel Birzu, Harihara Subrahmaniam Muralidharan, Danielle Goudeau, Rex R Malmstrom, Daniel S Fisher, Devaki Bhaya
{"title":"Hybridization breaks species barriers in long-term coevolution of a cyanobacterial population.","authors":"Gabriel Birzu, Harihara Subrahmaniam Muralidharan, Danielle Goudeau, Rex R Malmstrom, Daniel S Fisher, Devaki Bhaya","doi":"10.1101/2023.06.06.543983","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial species often undergo rampant recombination yet maintain cohesive genomic identity. Ecological differences can generate recombination barriers between species and sustain genomic clusters in the short term. But can these forces prevent genomic mixing during long-term coevolution? Cyanobacteria in Yellowstone hot springs comprise several diverse species that have coevolved for hundreds of thousands of years, providing a rare natural experiment. By analyzing more than 300 single-cell genomes, we show that despite each species forming a distinct genomic cluster, much of the diversity within species is the result of hybridization driven by selection, which has mixed their ancestral genotypes. This widespread mixing is contrary to the prevailing view that ecological barriers can maintain cohesive bacterial species and highlights the importance of hybridization as a source of genomic diversity.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/24/fb/nihpp-2023.06.06.543983v1.PMC10274767.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.06.06.543983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial species often undergo rampant recombination yet maintain cohesive genomic identity. Ecological differences can generate recombination barriers between species and sustain genomic clusters in the short term. But can these forces prevent genomic mixing during long-term coevolution? Cyanobacteria in Yellowstone hot springs comprise several diverse species that have coevolved for hundreds of thousands of years, providing a rare natural experiment. By analyzing more than 300 single-cell genomes, we show that despite each species forming a distinct genomic cluster, much of the diversity within species is the result of hybridization driven by selection, which has mixed their ancestral genotypes. This widespread mixing is contrary to the prevailing view that ecological barriers can maintain cohesive bacterial species and highlights the importance of hybridization as a source of genomic diversity.

Abstract Image

Abstract Image

Abstract Image

杂交打破了蓝藻种群长期共同进化的物种障碍。
细菌物种经常经历猖獗的重组,但仍保持着紧密的基因组特性。生态差异可以在物种之间产生重组障碍,并在短期内维持基因组簇。但是,在长期的共同进化过程中,这些力量能阻止基因组混合吗?黄石温泉中的蓝细菌由几个不同的物种组成,它们已经共同进化了数十万年,提供了一个罕见的自然实验。通过分析300多个单细胞基因组,我们发现,尽管每个物种都形成了一个独特的基因组簇,但物种内部的大部分多样性是由选择驱动的杂交的结果,这种选择混合了它们祖先的基因型。这种广泛的混合与主流观点相反,即生态屏障可以维持有凝聚力的细菌物种,并强调了杂交作为基因组多样性来源的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信