Homologous basic helix-loop-helix transcription factors induce distinct deformations of torsionally-stressed DNA: a potential transcription regulation mechanism.

Q3 Biochemistry, Genetics and Molecular Biology
QRB Discovery Pub Date : 2022-01-01 DOI:10.1017/qrd.2022.5
Johanna Hörberg, Kevin Moreau, Anna Reymer
{"title":"Homologous basic helix-loop-helix transcription factors induce distinct deformations of torsionally-stressed DNA: a potential transcription regulation mechanism.","authors":"Johanna Hörberg,&nbsp;Kevin Moreau,&nbsp;Anna Reymer","doi":"10.1017/qrd.2022.5","DOIUrl":null,"url":null,"abstract":"<p><p>Changing torsional restraints on DNA is essential for the regulation of transcription. Torsional stress, introduced by RNA polymerase, can propagate along chromatin facilitating topological transitions and modulating the specific binding of transcription factors (TFs) to DNA. Despite the importance, the mechanistic details on how torsional stress impacts the TFs-DNA complexation remain scarce. Herein, we address the impact of torsional stress on DNA complexation with homologous human basic helix-loop-helix (BHLH) hetero- and homodimers: MycMax, MadMax and MaxMax. The three TF dimers exhibit specificity towards the same DNA consensus sequence, the <i>E</i>-box response element, while regulating different transcriptional pathways. Using microseconds-long atomistic molecular dynamics simulations together with the torsional restraint that controls DNA total helical twist, we gradually over- and underwind naked and complexed DNA to a maximum of ± 5°/bp step. We observe that the binding of the BHLH dimers results in a similar increase in DNA torsional rigidity. However, under torsional stress the BHLH dimers induce distinct DNA deformations, characterised by changes in DNA grooves geometry and a significant asymmetric DNA bending. Supported by bioinformatics analyses, our data suggest that torsional stress may contribute to the execution of differential transcriptional programs of the homologous TFs by modulating their collaborative interactions.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"3 ","pages":"e4"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2022.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Changing torsional restraints on DNA is essential for the regulation of transcription. Torsional stress, introduced by RNA polymerase, can propagate along chromatin facilitating topological transitions and modulating the specific binding of transcription factors (TFs) to DNA. Despite the importance, the mechanistic details on how torsional stress impacts the TFs-DNA complexation remain scarce. Herein, we address the impact of torsional stress on DNA complexation with homologous human basic helix-loop-helix (BHLH) hetero- and homodimers: MycMax, MadMax and MaxMax. The three TF dimers exhibit specificity towards the same DNA consensus sequence, the E-box response element, while regulating different transcriptional pathways. Using microseconds-long atomistic molecular dynamics simulations together with the torsional restraint that controls DNA total helical twist, we gradually over- and underwind naked and complexed DNA to a maximum of ± 5°/bp step. We observe that the binding of the BHLH dimers results in a similar increase in DNA torsional rigidity. However, under torsional stress the BHLH dimers induce distinct DNA deformations, characterised by changes in DNA grooves geometry and a significant asymmetric DNA bending. Supported by bioinformatics analyses, our data suggest that torsional stress may contribute to the execution of differential transcriptional programs of the homologous TFs by modulating their collaborative interactions.

Abstract Image

Abstract Image

Abstract Image

同源的基本螺旋-环-螺旋转录因子诱导扭转应力DNA的明显变形:一种潜在的转录调节机制。
改变DNA上的扭转约束对转录调控至关重要。由RNA聚合酶引入的扭转应力可以沿着染色质传播,促进拓扑转变并调节转录因子(tf)与DNA的特异性结合。尽管具有重要意义,但扭转应力如何影响TFs-DNA络合的机制细节仍然很少。在此,我们研究了扭转应力对DNA与同源人碱性螺旋-环-螺旋(BHLH)异二聚体和同源二聚体MycMax、MadMax和MaxMax络合的影响。这三种TF二聚体对相同的DNA共识序列(E-box响应元件)表现出特异性,同时调节不同的转录途径。利用微秒级的原子分子动力学模拟和控制DNA总螺旋扭转的扭转约束,我们逐渐将裸DNA和复杂DNA的逆风和逆风提升到最大±5°/bp的步长。我们观察到BHLH二聚体的结合导致DNA扭转刚度的类似增加。然而,在扭转应力下,BHLH二聚体诱导明显的DNA变形,其特征是DNA凹槽几何形状的变化和显著的不对称DNA弯曲。在生物信息学分析的支持下,我们的数据表明,扭转应力可能通过调节同源tf的协同相互作用来促进其差异转录程序的执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
QRB Discovery
QRB Discovery Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信