Pharmacological Activities and In-Silico Studies of Bioactive Compounds Identified in Organic Fractions of the Methanolic Extract of Citrullus Colocynthis.
{"title":"Pharmacological Activities and In-Silico Studies of Bioactive Compounds Identified in Organic Fractions of the Methanolic Extract of <i>Citrullus Colocynthis</i>.","authors":"Haseeb Akram Sindhu, Muhammad Afzal, Izzah Shahid","doi":"10.1177/15593258231187357","DOIUrl":null,"url":null,"abstract":"<p><p>Medicinal plants have been extensively exploited for their immense pharmacological and immune-supporting potential. Fruit of <i>Citrullus colocynthis</i> has several active secondary metabolites such as phenolics, flavonoids, and essential oils that are used in traditional medicines as antidiabetic, anti-inflammatory, antioxidant, and antimicrobial agents. In this study, phytoconstituents in organic fractions (<i>n</i>-hexane, chloroform, and ethyl acetate) of the methanolic extract of <i>C. colocynthis</i> were analyzed and identified by FT-IR, HPLC, and GC-MS analysis. Ethyl acetate fraction showed the highest antioxidant scavenging (76 ± .769%) and anti-inflammatory (40 ± .473%) activities at the concentration of 3 mg/mL. Similarly, antidiabetic effect was measured by inhibition of α-amylase where, ethyl acetate fraction (77 ± .844%) exhibited the highest antidiabetic activity. Among all organic fractions, ethyl acetate exhibited strong antimicrobial potential followed by <i>n</i>-hexane and chloroform fractions against selected pathogenic bacteria. Various concentrations of the ethyl acetate extract were tested <i>in-vivo</i> for cytotoxicity and results indicated minor morphological changes in liver cells including ballooning, fatty droplets, and slight accumulation of extracellular matrix even at concentrations of 400 mg/kg. <i>In-silico</i> study showed that stigmasta-7,16-dien-3-ol had a strong interaction with COX-1 and COX-2 to reduce inflammation. The abovementioned results indicate the pharmacological strengths of <i>C. colocynthis</i> to fight several diseases.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/70/c6/10.1177_15593258231187357.PMC10331210.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15593258231187357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Medicinal plants have been extensively exploited for their immense pharmacological and immune-supporting potential. Fruit of Citrullus colocynthis has several active secondary metabolites such as phenolics, flavonoids, and essential oils that are used in traditional medicines as antidiabetic, anti-inflammatory, antioxidant, and antimicrobial agents. In this study, phytoconstituents in organic fractions (n-hexane, chloroform, and ethyl acetate) of the methanolic extract of C. colocynthis were analyzed and identified by FT-IR, HPLC, and GC-MS analysis. Ethyl acetate fraction showed the highest antioxidant scavenging (76 ± .769%) and anti-inflammatory (40 ± .473%) activities at the concentration of 3 mg/mL. Similarly, antidiabetic effect was measured by inhibition of α-amylase where, ethyl acetate fraction (77 ± .844%) exhibited the highest antidiabetic activity. Among all organic fractions, ethyl acetate exhibited strong antimicrobial potential followed by n-hexane and chloroform fractions against selected pathogenic bacteria. Various concentrations of the ethyl acetate extract were tested in-vivo for cytotoxicity and results indicated minor morphological changes in liver cells including ballooning, fatty droplets, and slight accumulation of extracellular matrix even at concentrations of 400 mg/kg. In-silico study showed that stigmasta-7,16-dien-3-ol had a strong interaction with COX-1 and COX-2 to reduce inflammation. The abovementioned results indicate the pharmacological strengths of C. colocynthis to fight several diseases.