Arithmetic statistics of Prym surfaces.

IF 1.3 2区 数学 Q1 MATHEMATICS
Jef Laga
{"title":"Arithmetic statistics of Prym surfaces.","authors":"Jef Laga","doi":"10.1007/s00208-022-02398-5","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a family of abelian surfaces over <math><mi>Q</mi></math> arising as Prym varieties of double covers of genus-1 curves by genus-3 curves. These abelian surfaces carry a polarization of type (1, 2) and we show that the average size of the Selmer group of this polarization equals 3. Moreover we show that the average size of the 2-Selmer group of the abelian surfaces in the same family is bounded above by 5. This implies an upper bound on the average rank of these Prym varieties, and gives evidence for the heuristics of Poonen and Rains for a family of abelian varieties which are not principally polarized. The proof is a combination of an analysis of the Lie algebra embedding <math><mrow><msub><mi>F</mi><mn>4</mn></msub><mo>⊂</mo><msub><mi>E</mi><mn>6</mn></msub></mrow></math>, invariant theory, a classical geometric construction due to Pantazis, a study of Néron component groups of Prym surfaces and Bhargava's orbit-counting techniques.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"386 1-2","pages":"247-327"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163148/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-022-02398-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We consider a family of abelian surfaces over Q arising as Prym varieties of double covers of genus-1 curves by genus-3 curves. These abelian surfaces carry a polarization of type (1, 2) and we show that the average size of the Selmer group of this polarization equals 3. Moreover we show that the average size of the 2-Selmer group of the abelian surfaces in the same family is bounded above by 5. This implies an upper bound on the average rank of these Prym varieties, and gives evidence for the heuristics of Poonen and Rains for a family of abelian varieties which are not principally polarized. The proof is a combination of an analysis of the Lie algebra embedding F4E6, invariant theory, a classical geometric construction due to Pantazis, a study of Néron component groups of Prym surfaces and Bhargava's orbit-counting techniques.

Abstract Image

Abstract Image

Abstract Image

Prym曲面的算术统计。
我们考虑了Q上的一类阿贝尔曲面,它们是由属1曲线被属3曲线双重覆盖而产生的Prym变种。这些阿贝尔曲面具有(1,2)型的偏振,我们证明了这种偏振的Selmer群的平均大小等于3。此外,我们还证明了同族的阿贝尔曲面的2-Selmer群的平均大小在5的上界。这暗示了这些Prym品种的平均秩的上界,并为Poonen和Rains对一类非主要极化的阿贝尔品种的启发式提供了证据。证明是对嵌入F4∧E6的李代数的分析、不变量理论、潘塔齐斯的经典几何构造、Prym曲面的nsamron分量群的研究以及巴尔加瓦的轨道计数技术的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信