{"title":"What's a good prediction? Challenges in evaluating an agent's knowledge.","authors":"Alex Kearney, Anna J Koop, Patrick M Pilarski","doi":"10.1177/10597123221095880","DOIUrl":null,"url":null,"abstract":"<p><p>Constructing general knowledge by learning task-independent models of the world can help agents solve challenging problems. However, both constructing and evaluating such models remain an open challenge. The most common approaches to evaluating models is to assess their accuracy with respect to observable values. However, the prevailing reliance on estimator accuracy as a proxy for the usefulness of the knowledge has the potential to lead us astray. We demonstrate the conflict between accuracy and usefulness through a series of illustrative examples including both a thought experiment and an empirical example in Minecraft, using the General Value Function framework (GVF). Having identified challenges in assessing an agent's knowledge, we propose an alternate evaluation approach that arises naturally in the online continual learning setting: we recommend evaluation by examining internal learning processes, specifically the relevance of a GVF's features to the prediction task at hand. This paper contributes a first look into evaluation of predictions through their use, an integral component of predictive knowledge which is as of yet unexplored.</p>","PeriodicalId":55552,"journal":{"name":"Adaptive Behavior","volume":"31 3","pages":"197-212"},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240643/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Behavior","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10597123221095880","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4
Abstract
Constructing general knowledge by learning task-independent models of the world can help agents solve challenging problems. However, both constructing and evaluating such models remain an open challenge. The most common approaches to evaluating models is to assess their accuracy with respect to observable values. However, the prevailing reliance on estimator accuracy as a proxy for the usefulness of the knowledge has the potential to lead us astray. We demonstrate the conflict between accuracy and usefulness through a series of illustrative examples including both a thought experiment and an empirical example in Minecraft, using the General Value Function framework (GVF). Having identified challenges in assessing an agent's knowledge, we propose an alternate evaluation approach that arises naturally in the online continual learning setting: we recommend evaluation by examining internal learning processes, specifically the relevance of a GVF's features to the prediction task at hand. This paper contributes a first look into evaluation of predictions through their use, an integral component of predictive knowledge which is as of yet unexplored.
期刊介绍:
_Adaptive Behavior_ publishes articles on adaptive behaviour in living organisms and autonomous artificial systems. The official journal of the _International Society of Adaptive Behavior_, _Adaptive Behavior_, addresses topics such as perception and motor control, embodied cognition, learning and evolution, neural mechanisms, artificial intelligence, behavioral sequences, motivation and emotion, characterization of environments, decision making, collective and social behavior, navigation, foraging, communication and signalling.
Print ISSN: 1059-7123