The Scaffold Protein KATNIP Enhances CILK1 Control of Primary Cilia.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2023-01-01 Epub Date: 2023-09-04 DOI:10.1080/10985549.2023.2246870
Jacob S Turner, Ellie A McCabe, Kevin W Kuang, Casey D Gailey, David L Brautigan, Ana Limerick, Elena X Wang, Zheng Fu
{"title":"The Scaffold Protein KATNIP Enhances CILK1 Control of Primary Cilia.","authors":"Jacob S Turner, Ellie A McCabe, Kevin W Kuang, Casey D Gailey, David L Brautigan, Ana Limerick, Elena X Wang, Zheng Fu","doi":"10.1080/10985549.2023.2246870","DOIUrl":null,"url":null,"abstract":"<p><p>The primary cilium functions as a cellular sensory organelle and signaling antenna that detects and transduces extracellular signals. Mutations in the human gene <i>CILK1</i> (ciliogenesis associated kinase 1) cause abnormal cilia elongation and faulty Hedgehog signaling, associated with developmental disorders and epilepsy. CILK1 is a protein kinase that requires dual phosphorylation of its TDY motif for activation and its extended C-terminal intrinsically disordered region (IDR) mediates targeting to the basal body and substrate recognition. Proteomics previously identified katanin-interacting protein (KATNIP), also known as KIAA0556, as a CILK1 interacting partner. In this study we discovered that CILK1 colocalizes with KATNIP at the basal body and the CILK1 IDR is sufficient to mediate binding to KATNIP. Deletion analysis of KATNIP shows one of three domains of unknown function (DUF) is required for association with CILK1. KATNIP binding with CILK1 drastically elevated CILK1 protein levels and TDY phosphorylation in cells. This resulted in a profound increase in phosphorylation of known CILK1 substrates and suppression of cilia length. Thus, KATNIP functions as a regulatory subunit of CILK1 that potentiates its actions. This advances our understanding of the molecular basis of control of primary cilia.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2023.2246870","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The primary cilium functions as a cellular sensory organelle and signaling antenna that detects and transduces extracellular signals. Mutations in the human gene CILK1 (ciliogenesis associated kinase 1) cause abnormal cilia elongation and faulty Hedgehog signaling, associated with developmental disorders and epilepsy. CILK1 is a protein kinase that requires dual phosphorylation of its TDY motif for activation and its extended C-terminal intrinsically disordered region (IDR) mediates targeting to the basal body and substrate recognition. Proteomics previously identified katanin-interacting protein (KATNIP), also known as KIAA0556, as a CILK1 interacting partner. In this study we discovered that CILK1 colocalizes with KATNIP at the basal body and the CILK1 IDR is sufficient to mediate binding to KATNIP. Deletion analysis of KATNIP shows one of three domains of unknown function (DUF) is required for association with CILK1. KATNIP binding with CILK1 drastically elevated CILK1 protein levels and TDY phosphorylation in cells. This resulted in a profound increase in phosphorylation of known CILK1 substrates and suppression of cilia length. Thus, KATNIP functions as a regulatory subunit of CILK1 that potentiates its actions. This advances our understanding of the molecular basis of control of primary cilia.

支架蛋白KATNIP增强原发性纤毛的CILK1控制。
初级纤毛作为细胞感觉细胞器和信号天线,检测和转导细胞外信号。人类基因CILK1(纤毛生成相关激酶1)的突变导致纤毛异常伸长和Hedgehog信号传导缺陷,与发育障碍和癫痫有关。CILK1是一种蛋白激酶,需要其TDY基序的双重磷酸化才能激活,其延伸的C末端固有无序区(IDR)介导靶向基体和底物识别。蛋白质组学先前鉴定了卡塔宁相互作用蛋白(KATNIP),也称为KIAA0556,作为CILK1相互作用伴侣。在这项研究中,我们发现CILK1在基体与KATNIP共定位,并且CILK1-IDR足以介导与KATNP的结合。KATNIP的缺失分析表明,与CILK1相关需要三个未知功能域之一(DUF)。KATNIP与CILK1的结合显著提高了细胞中CILK1蛋白水平和TDY磷酸化。这导致已知CILK1底物磷酸化的显著增加和纤毛长度的抑制。因此,KATNIP作为CILK1的调节亚单位发挥作用,增强其作用。这推进了我们对控制初级纤毛的分子基础的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信