Deletion in Abstract Voronoi Diagrams in Expected Linear Time and Related Problems.

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Discrete & Computational Geometry Pub Date : 2023-01-01 Epub Date: 2023-03-25 DOI:10.1007/s00454-022-00463-z
Kolja Junginger, Evanthia Papadopoulou
{"title":"Deletion in Abstract Voronoi Diagrams in Expected Linear Time and Related Problems.","authors":"Kolja Junginger,&nbsp;Evanthia Papadopoulou","doi":"10.1007/s00454-022-00463-z","DOIUrl":null,"url":null,"abstract":"<p><p>Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open problem in a long time; similarly, for any concrete Voronoi diagram of generalized (non-point) sites. In this paper we present a simple, expected linear-time algorithm to update an abstract Voronoi diagram after deletion of one site. To achieve this result, we use the concept of a Voronoi-like diagram, a relaxed Voronoi structure of independent interest. Voronoi-like diagrams serve as intermediate structures, which are considerably simpler to compute, thus, making an expected linear-time construction possible. We formalize the concept and prove that it is robust under insertion, therefore, enabling its use in incremental constructions. The time-complexity analysis introduces a variant to backwards analysis, which is applicable to order-dependent structures. We further extend the technique to compute in expected linear time: the order-<math><mrow><mo>(</mo><mi>k</mi><mspace></mspace><mo>+</mo><mspace></mspace><mn>1</mn><mo>)</mo></mrow></math> subdivision within an order-<i>k</i> Voronoi region, and the farthest abstract Voronoi diagram, after the order of its regions at infinity is known.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"69 4","pages":"1040-1078"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169906/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00463-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4

Abstract

Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open problem in a long time; similarly, for any concrete Voronoi diagram of generalized (non-point) sites. In this paper we present a simple, expected linear-time algorithm to update an abstract Voronoi diagram after deletion of one site. To achieve this result, we use the concept of a Voronoi-like diagram, a relaxed Voronoi structure of independent interest. Voronoi-like diagrams serve as intermediate structures, which are considerably simpler to compute, thus, making an expected linear-time construction possible. We formalize the concept and prove that it is robust under insertion, therefore, enabling its use in incremental constructions. The time-complexity analysis introduces a variant to backwards analysis, which is applicable to order-dependent structures. We further extend the technique to compute in expected linear time: the order-(k+1) subdivision within an order-k Voronoi region, and the farthest abstract Voronoi diagram, after the order of its regions at infinity is known.

Abstract Image

Abstract Image

Abstract Image

期望线性时间中抽象Voronoi图的删除及相关问题。
删除一个站点后,在线性时间内更新抽象的Voronoi图,长期以来一直是一个悬而未决的问题;类似地,对于广义(非点)站点的任何具体Voronoi图。在本文中,我们提出了一种简单的、预期的线性时间算法,在删除一个站点后更新抽象的Voronoi图。为了实现这一结果,我们使用了类Voronoi图的概念,这是一种独立感兴趣的松弛Voronai结构。类Voronoi图作为中间结构,计算起来要简单得多,从而使预期的线性时间结构成为可能。我们形式化了这个概念,并证明了它在插入下是稳健的,因此,使它能够在增量构造中使用。时间复杂性分析引入了一种向后分析的变体,适用于依赖于顺序的结构。我们进一步扩展了该技术以在期望的线性时间内计算:k阶Voronoi区域内的阶-(k+1)细分,以及在其无穷大区域的阶已知之后的最远抽象Voronoi图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信