Periodic Lorentz gas with small scatterers.

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Probability Theory and Related Fields Pub Date : 2023-01-01 Epub Date: 2023-03-15 DOI:10.1007/s00440-023-01197-6
Péter Bálint, Henk Bruin, Dalia Terhesiu
{"title":"Periodic Lorentz gas with small scatterers.","authors":"Péter Bálint, Henk Bruin, Dalia Terhesiu","doi":"10.1007/s00440-023-01197-6","DOIUrl":null,"url":null,"abstract":"<p><p>We prove limit laws for infinite horizon planar periodic Lorentz gases when, as time <i>n</i> tends to infinity, the scatterer size <math><mi>ρ</mi></math> may also tend to zero simultaneously at a sufficiently slow pace. In particular we obtain a non-standard Central Limit Theorem as well as a Local Limit Theorem for the displacement function. To the best of our knowledge, these are the first results on an intermediate case between the two well-studied regimes with superdiffusive <math><msqrt><mrow><mi>n</mi><mo>log</mo><mi>n</mi></mrow></msqrt></math> scaling (i) for fixed infinite horizon configurations-letting first <math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math> and then <math><mrow><mi>ρ</mi><mo>→</mo><mn>0</mn></mrow></math>-studied e.g. by Szász and Varjú (J Stat Phys 129(1):59-80, 2007) and (ii) Boltzmann-Grad type situations-letting first <math><mrow><mi>ρ</mi><mo>→</mo><mn>0</mn></mrow></math> and then <math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math>-studied by Marklof and Tóth (Commun Math Phys 347(3):933-981, 2016) .</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"186 1-2","pages":"159-219"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-023-01197-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We prove limit laws for infinite horizon planar periodic Lorentz gases when, as time n tends to infinity, the scatterer size ρ may also tend to zero simultaneously at a sufficiently slow pace. In particular we obtain a non-standard Central Limit Theorem as well as a Local Limit Theorem for the displacement function. To the best of our knowledge, these are the first results on an intermediate case between the two well-studied regimes with superdiffusive nlogn scaling (i) for fixed infinite horizon configurations-letting first n and then ρ0-studied e.g. by Szász and Varjú (J Stat Phys 129(1):59-80, 2007) and (ii) Boltzmann-Grad type situations-letting first ρ0 and then n-studied by Marklof and Tóth (Commun Math Phys 347(3):933-981, 2016) .

Abstract Image

Abstract Image

Abstract Image

具有小散射体的周期洛伦兹气体。
我们证明了无限视界平面周期洛伦兹气体的极限律,当时间n趋于无穷大时,散射体大小ρ也可能以足够慢的速度同时趋于零。特别地,我们得到了位移函数的一个非标准中心极限定理和一个局部极限定理。据我们所知,这是关于两个研究良好的超扩散nlogn标度(i)的固定无限视界配置的中间情况的第一个结果,其中第一个n→∞ 然后ρ→0-例如由SzáSz和Varjú研究(J Stat Phys 129(1):59-802007)和(ii)Boltzmann Grad型情形→0然后n→∞-Marklof和Tóth研究(Commun Math Phys 347(3):933-9812016)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信