Matthew I Banks, Bryan M Krause, D Graham Berger, Declan I Campbell, Aaron D Boes, Joel E Bruss, Christopher K Kovach, Hiroto Kawasaki, Mitchell Steinschneider, Kirill V Nourski
{"title":"Functional geometry of auditory cortical resting state networks derived from intracranial electrophysiology.","authors":"Matthew I Banks, Bryan M Krause, D Graham Berger, Declan I Campbell, Aaron D Boes, Joel E Bruss, Christopher K Kovach, Hiroto Kawasaki, Mitchell Steinschneider, Kirill V Nourski","doi":"10.1371/journal.pbio.3002239","DOIUrl":null,"url":null,"abstract":"Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At fine scale, a group of auditory cortical regions excluded several higher order auditory areas and segregated maximally from prefrontal cortex. On mesoscale, the proximity of limbic structures to auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macro scale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders. Blurb We describe the organization of human neocortex on multiple spatial scalesbased on resting state intracranial electrophysiology. We focus on cortical regions involved in auditory processing and examine inter-regional hierarchical relationships, network topology, and hemispheric lateralization. This work introduces a powerful analytical tool to examine mechanisms of altered arousal states, brain development, and neuropsychiatric disorders.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499207/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002239","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At fine scale, a group of auditory cortical regions excluded several higher order auditory areas and segregated maximally from prefrontal cortex. On mesoscale, the proximity of limbic structures to auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macro scale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders. Blurb We describe the organization of human neocortex on multiple spatial scalesbased on resting state intracranial electrophysiology. We focus on cortical regions involved in auditory processing and examine inter-regional hierarchical relationships, network topology, and hemispheric lateralization. This work introduces a powerful analytical tool to examine mechanisms of altered arousal states, brain development, and neuropsychiatric disorders.
期刊介绍:
PLOS Biology is an open-access, peer-reviewed general biology journal published by PLOS, a nonprofit organization of scientists and physicians dedicated to making the world's scientific and medical literature freely accessible. The journal publishes new articles online weekly, with issues compiled and published monthly.
ISSN Numbers:
eISSN: 1545-7885
ISSN: 1544-9173