The Possible Role of Anoxic Alkaline High Subcritical Water in the Formation of Ferric Minerals, Methane and Disordered Graphitic Carbon in a BARB3 Drilled Sample of the 3.4 Ga Buck Reef Chert.

IF 1.9 4区 物理与天体物理 Q2 BIOLOGY
Marie-Paule Bassez
{"title":"The Possible Role of Anoxic Alkaline High Subcritical Water in the Formation of Ferric Minerals, Methane and Disordered Graphitic Carbon in a BARB3 Drilled Sample of the 3.4 Ga Buck Reef Chert.","authors":"Marie-Paule Bassez","doi":"10.1007/s11084-023-09638-x","DOIUrl":null,"url":null,"abstract":"<p><p>The present article reports Raman spectroscopic observations of siderite, hematite, disordered graphitic carbon and possibly greenalite inside the quartz matrix of a banded iron sample from the BARB3 core drilled inside the 3.4 Ga Buck Reef Chert of the Barberton Greenstone Belt in South Africa. The article also reports Raman spectroscopic observations of quartz cavities, concluding in the presence of water, methane and sodium hydroxide at high concentration leading to pH ~ 15 inside the inclusion, suggesting an Archean water which was strongly basic. Fe<sup>III</sup>-greenalite may also be present inside the inclusion. The possible role of anoxic alkaline high subcritical water in the formation of ferric minerals and the CO required for the synthesis of molecules of biological interest has been demonstrated theoretically since 2013 and summarized in the concept of Geobiotropy. The present article experimentally confirms the importance of considering water in its anoxic strongly alkaline high subcritical domain for the formation of quartz, hematite, Fe<sup>III</sup>-greenalite, methane and disordered graphitic carbon. Methane is proposed to form locally when the carbon dioxide that is dissolved in the Archean anoxic alkaline high subcritical water, interacts with the molecular hydrogen that is emitted during the anoxic alkaline oxidation of ferrous silicates. The carbon matter is proposed to form as deposition from the anoxic methane-rich fluid. A detailed study of carbon matter from diverse origins is presented in a supplementary file. The study shows that the BARB3_23B sample has been submitted to ~ 335 °C, a temperature of the high subcritical domain, and that the graphitic structure contains very low amounts of oxygen and no hydroxyl functional groups. The importance of considering the structure of water is applied to the constructions of the Neoproterozoic and Archean banded iron formations. It is proposed that their minerals are produced inside chemical reaction chambers containing ferrous silicates, and ejected from the Earth's oceanic crust or upper mantle, during processes involving subduction events or not.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-023-09638-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present article reports Raman spectroscopic observations of siderite, hematite, disordered graphitic carbon and possibly greenalite inside the quartz matrix of a banded iron sample from the BARB3 core drilled inside the 3.4 Ga Buck Reef Chert of the Barberton Greenstone Belt in South Africa. The article also reports Raman spectroscopic observations of quartz cavities, concluding in the presence of water, methane and sodium hydroxide at high concentration leading to pH ~ 15 inside the inclusion, suggesting an Archean water which was strongly basic. FeIII-greenalite may also be present inside the inclusion. The possible role of anoxic alkaline high subcritical water in the formation of ferric minerals and the CO required for the synthesis of molecules of biological interest has been demonstrated theoretically since 2013 and summarized in the concept of Geobiotropy. The present article experimentally confirms the importance of considering water in its anoxic strongly alkaline high subcritical domain for the formation of quartz, hematite, FeIII-greenalite, methane and disordered graphitic carbon. Methane is proposed to form locally when the carbon dioxide that is dissolved in the Archean anoxic alkaline high subcritical water, interacts with the molecular hydrogen that is emitted during the anoxic alkaline oxidation of ferrous silicates. The carbon matter is proposed to form as deposition from the anoxic methane-rich fluid. A detailed study of carbon matter from diverse origins is presented in a supplementary file. The study shows that the BARB3_23B sample has been submitted to ~ 335 °C, a temperature of the high subcritical domain, and that the graphitic structure contains very low amounts of oxygen and no hydroxyl functional groups. The importance of considering the structure of water is applied to the constructions of the Neoproterozoic and Archean banded iron formations. It is proposed that their minerals are produced inside chemical reaction chambers containing ferrous silicates, and ejected from the Earth's oceanic crust or upper mantle, during processes involving subduction events or not.

Abstract Image

缺氧碱性高亚临界水在3.4 Ga Buck Reef Chert BARB3钻孔样品中铁矿物、甲烷和无序石墨碳形成中的可能作用。
本文报道了在南非Barberton Greenstone Belt的3.4 Ga Buck Reef Chert钻探的BARB3岩芯中,对带状铁样品的石英基质中的菱铁矿、赤铁矿、无序石墨碳以及可能的绿钠石进行的拉曼光谱观察。这篇文章还报道了石英腔的拉曼光谱观察结果,得出的结论是,存在高浓度的水、甲烷和氢氧化钠,导致pH值 ~ 包体内部有15个,表明为强烈碱性的太古宙水。FeIII绿钠石也可能存在于夹杂物内部。自2013年以来,缺氧碱性高亚临界水在合成具有生物学意义的分子所需的铁矿物和CO的形成中可能发挥的作用已在理论上得到证明,并在地生物性的概念中进行了总结。本文通过实验证实了在缺氧强碱性高亚临界区域考虑水对石英、赤铁矿、FeIII绿钠石、甲烷和无序石墨碳形成的重要性。当溶解在太古代缺氧碱性高亚临界水中的二氧化碳与硅酸亚铁缺氧碱性氧化过程中释放的分子氢相互作用时,甲烷被认为是局部形成的。碳物质被认为是由缺氧的富含甲烷的流体沉积而成。补充文件中介绍了对不同来源碳物质的详细研究。研究表明,BARB3_23B样品已提交 ~ 335°C,一个高亚临界域的温度,并且石墨结构包含非常少量的氧并且没有羟基官能团。考虑水结构的重要性适用于新元古代和太古代带状铁构造的建造。有人提出,它们的矿物是在含有硅酸亚铁的化学反应室内产生的,并在涉及俯冲事件或不涉及俯冲事件的过程中从地球的海洋地壳或上地幔喷出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
15.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信