Robust variance estimation in small meta-analysis with the standardized mean difference

IF 5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Rrita Zejnullahi, Larry V. Hedges
{"title":"Robust variance estimation in small meta-analysis with the standardized mean difference","authors":"Rrita Zejnullahi,&nbsp;Larry V. Hedges","doi":"10.1002/jrsm.1668","DOIUrl":null,"url":null,"abstract":"<p>Conventional random-effects models in meta-analysis rely on large sample approximations instead of exact small sample results. While random-effects methods produce efficient estimates and confidence intervals for the summary effect have correct coverage when the number of studies is sufficiently large, we demonstrate that conventional methods result in confidence intervals that are not wide enough when the number of studies is small, depending on the configuration of sample sizes across studies, the degree of true heterogeneity and number of studies. We introduce two alternative variance estimators with better small sample properties, investigate degrees of freedom adjustments for computing confidence intervals, and study their effectiveness via simulation studies.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 1","pages":"44-60"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1668","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1668","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional random-effects models in meta-analysis rely on large sample approximations instead of exact small sample results. While random-effects methods produce efficient estimates and confidence intervals for the summary effect have correct coverage when the number of studies is sufficiently large, we demonstrate that conventional methods result in confidence intervals that are not wide enough when the number of studies is small, depending on the configuration of sample sizes across studies, the degree of true heterogeneity and number of studies. We introduce two alternative variance estimators with better small sample properties, investigate degrees of freedom adjustments for computing confidence intervals, and study their effectiveness via simulation studies.

Abstract Image

标准化平均差的小型荟萃分析的稳健方差估计。
传统的荟萃分析随机效应模型依赖于大样本近似,而不是精确的小样本结果。当研究数量足够大时,随机效应方法产生有效的估计,并且总结效应的置信区间具有正确的覆盖范围,但我们证明,当研究数量较少时,传统方法导致的置信区间不够宽,这取决于研究的样本量配置、真正异质性的程度和研究数量。我们引入了两种具有更好的小样本特性的替代方差估计器,研究了计算置信区间的自由度调整,并通过模拟研究研究了它们的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research Synthesis Methods
Research Synthesis Methods MATHEMATICAL & COMPUTATIONAL BIOLOGYMULTID-MULTIDISCIPLINARY SCIENCES
CiteScore
16.90
自引率
3.10%
发文量
75
期刊介绍: Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines. Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines. By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信