Konrad W. Eichhorn Colombo, Vladislav V. Kharton, Filippo Berto, Nicola Paltrinieri
{"title":"Transient simulation of failures during start-up and power cut of a solid oxide fuel cell system using multiphysics modeling","authors":"Konrad W. Eichhorn Colombo, Vladislav V. Kharton, Filippo Berto, Nicola Paltrinieri","doi":"10.1002/mdp2.177","DOIUrl":null,"url":null,"abstract":"<p>We investigate failure incidents of a solid oxide fuel cell (SOFC) system during start-up from ambient conditions as well as during operation around the design point, using numerical simulation with a view to performance and thermo-mechanical stresses. During start-up, which comprises heating and load ramping phases, the system's trajectory moves through a relatively large temperature range. The simulated failure scenarios include reversible operational discontinuities in terms of input parameters and irreversible hardware failures. Furthermore, we also present results for a complete power cut. A multiphysics modeling approach is used to couple thermal, electrochemical, chemical, and thermo-mechanical phenomena by means of time-dependent partial differential, algebraic, and integral equations. Simulations revealed that the system can smooth out thermal discontinuities that are within a few minutes, that is, within the range of its thermal inertia. However, during the initial phase of the start-up procedure, thermo-mechanical stresses are relatively high due to larger differences between the sintering (manufacturing) and operation temperature, which makes the system more susceptible to failure. This work demonstrates that a multiphysics approach with control- and reliability-relevant aspects leads to a realistic problem formulation and analysis for practical applications.</p>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mdp2.177","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We investigate failure incidents of a solid oxide fuel cell (SOFC) system during start-up from ambient conditions as well as during operation around the design point, using numerical simulation with a view to performance and thermo-mechanical stresses. During start-up, which comprises heating and load ramping phases, the system's trajectory moves through a relatively large temperature range. The simulated failure scenarios include reversible operational discontinuities in terms of input parameters and irreversible hardware failures. Furthermore, we also present results for a complete power cut. A multiphysics modeling approach is used to couple thermal, electrochemical, chemical, and thermo-mechanical phenomena by means of time-dependent partial differential, algebraic, and integral equations. Simulations revealed that the system can smooth out thermal discontinuities that are within a few minutes, that is, within the range of its thermal inertia. However, during the initial phase of the start-up procedure, thermo-mechanical stresses are relatively high due to larger differences between the sintering (manufacturing) and operation temperature, which makes the system more susceptible to failure. This work demonstrates that a multiphysics approach with control- and reliability-relevant aspects leads to a realistic problem formulation and analysis for practical applications.