Omics-based deep learning approaches for lung cancer decision-making and therapeutics development.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Thi-Oanh Tran, Thanh Hoa Vo, Nguyen Quoc Khanh Le
{"title":"Omics-based deep learning approaches for lung cancer decision-making and therapeutics development.","authors":"Thi-Oanh Tran, Thanh Hoa Vo, Nguyen Quoc Khanh Le","doi":"10.1093/bfgp/elad031","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung cancer treatment. In response to the demands for minimally invasive procedures and technology development over the past decade, many types of multi-omics data at various genome levels have been generated. As omics data grow, artificial intelligence models, particularly deep learning, are prominent in developing more rapid and effective methods to potentially improve lung cancer patient diagnosis, prognosis and treatment strategy. This decade has seen genome-based deep learning models thriving in various lung cancer tasks, including cancer prediction, subtype classification, prognosis estimation, cancer molecular signatures identification, treatment response prediction and biomarker development. In this study, we summarized available data sources for deep-learning-based lung cancer mining and provided an update on recent deep learning models in lung cancer genomics. Subsequently, we reviewed the current issues and discussed future research directions of deep-learning-based lung cancer genomics research.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer has been the most common and the leading cause of cancer deaths globally. Besides clinicopathological observations and traditional molecular tests, the advent of robust and scalable techniques for nucleic acid analysis has revolutionized biological research and medicinal practice in lung cancer treatment. In response to the demands for minimally invasive procedures and technology development over the past decade, many types of multi-omics data at various genome levels have been generated. As omics data grow, artificial intelligence models, particularly deep learning, are prominent in developing more rapid and effective methods to potentially improve lung cancer patient diagnosis, prognosis and treatment strategy. This decade has seen genome-based deep learning models thriving in various lung cancer tasks, including cancer prediction, subtype classification, prognosis estimation, cancer molecular signatures identification, treatment response prediction and biomarker development. In this study, we summarized available data sources for deep-learning-based lung cancer mining and provided an update on recent deep learning models in lung cancer genomics. Subsequently, we reviewed the current issues and discussed future research directions of deep-learning-based lung cancer genomics research.

基于 Omics 的深度学习方法用于肺癌决策和疗法开发。
肺癌是全球最常见的癌症,也是导致癌症死亡的主要原因。除了临床病理观察和传统的分子检测外,强大的、可扩展的核酸分析技术的出现彻底改变了肺癌治疗的生物学研究和医学实践。过去十年来,随着微创手术的需求和技术的发展,产生了许多不同基因组水平的多组学数据。随着 omics 数据的增长,人工智能模型,尤其是深度学习,在开发更快速有效的方法以改善肺癌患者的诊断、预后和治疗策略方面发挥了突出作用。这十年来,基于基因组的深度学习模型在各种肺癌任务中茁壮成长,包括癌症预测、亚型分类、预后评估、癌症分子特征识别、治疗反应预测和生物标记物开发。在本研究中,我们总结了基于深度学习的肺癌挖掘的可用数据源,并提供了肺癌基因组学中最新的深度学习模型。随后,我们回顾了当前的问题,并讨论了基于深度学习的肺癌基因组学研究的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信