Chao Fang, Haiping Du, Lingshuang Wang, Baohui Liu, Fanjiang Kong
{"title":"Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean.","authors":"Chao Fang, Haiping Du, Lingshuang Wang, Baohui Liu, Fanjiang Kong","doi":"10.1016/j.jgg.2023.09.004","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean (Glycine max [L.] Merr.) is an important crop that provides protein and vegetable oil for human consumption. As soybean is a photoperiod-sensitive crop, its cultivation and yield are limited by the photoperiodic conditions in the field. In contrast to other major crops, soybean has a special plant architecture and a special symbiotic nitrogen fixation system, representing two unique breeding directions. Thus, flowering time, plant architecture, and symbiotic nitrogen fixation are three critical or unique yield-determining factors. This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean. Meanwhile, we propose potential research directions to increase soybean production, discuss the application of genomics and genomic-assisted breeding, and explore research directions to address future challenges, particularly those posed by global climate changes.</p>","PeriodicalId":15985,"journal":{"name":"Journal of genetics and genomics = Yi chuan xue bao","volume":" ","pages":"379-393"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of genetics and genomics = Yi chuan xue bao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jgg.2023.09.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Soybean (Glycine max [L.] Merr.) is an important crop that provides protein and vegetable oil for human consumption. As soybean is a photoperiod-sensitive crop, its cultivation and yield are limited by the photoperiodic conditions in the field. In contrast to other major crops, soybean has a special plant architecture and a special symbiotic nitrogen fixation system, representing two unique breeding directions. Thus, flowering time, plant architecture, and symbiotic nitrogen fixation are three critical or unique yield-determining factors. This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean. Meanwhile, we propose potential research directions to increase soybean production, discuss the application of genomics and genomic-assisted breeding, and explore research directions to address future challenges, particularly those posed by global climate changes.