{"title":"MAICRM: A general model for rapid simulation of hot dense plasma spectra","authors":"Xiaoying Han, Lingxiao Li, Zhensheng Dai, Wudi Zheng","doi":"10.1016/j.hedp.2021.100943","DOIUrl":null,"url":null,"abstract":"<div><p>This work is the further development of the general model, Multi-Average Ion Collisional-Radiative Model (MAICRM), to calculate the plasma spectral properties of hot dense plasmas. In this model, an average ion is used to characterize the average orbital occupations and the total populations of the configurations at a single charge state. The orbital occupations and population of the average ion are obtained by solving two sets of rate equations sequentially and iteratively. The calculated spectra of Xe and Au plasmas under different plasma conditions are in good agreement with the DCA/SCA calculations while the computational cost is much lower.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"39 ","pages":"Article 100943"},"PeriodicalIF":1.6000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.hedp.2021.100943","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181821000173","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 3
Abstract
This work is the further development of the general model, Multi-Average Ion Collisional-Radiative Model (MAICRM), to calculate the plasma spectral properties of hot dense plasmas. In this model, an average ion is used to characterize the average orbital occupations and the total populations of the configurations at a single charge state. The orbital occupations and population of the average ion are obtained by solving two sets of rate equations sequentially and iteratively. The calculated spectra of Xe and Au plasmas under different plasma conditions are in good agreement with the DCA/SCA calculations while the computational cost is much lower.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.