Bianca J J M Brundel, Xun Ai, Mellanie True Hills, Myrthe F Kuipers, Gregory Y H Lip, Natasja M S de Groot
{"title":"Atrial fibrillation.","authors":"Bianca J J M Brundel, Xun Ai, Mellanie True Hills, Myrthe F Kuipers, Gregory Y H Lip, Natasja M S de Groot","doi":"10.1038/s41572-022-00347-9","DOIUrl":null,"url":null,"abstract":"<p><p>Atrial fibrillation (AF) is the most common cardiac arrhythmia despite substantial efforts to understand the pathophysiology of the condition and develop improved treatments. Identifying the underlying causative mechanisms of AF in individual patients is difficult and the efficacy of current therapies is suboptimal. Consequently, the incidence of AF is steadily rising and there is a pressing need for novel therapies. Research has revealed that defects in specific molecular pathways underlie AF pathogenesis, resulting in electrical conduction disorders that drive AF. The severity of this so-called electropathology correlates with the stage of AF disease progression and determines the response to AF treatment. Therefore, unravelling the molecular mechanisms underlying electropathology is expected to fuel the development of innovative personalized diagnostic tools and mechanism-based therapies. Moreover, the co-creation of AF studies with patients to implement novel diagnostic tools and therapies is a prerequisite for successful personalized AF management. Currently, various treatment modalities targeting AF-related electropathology, including lifestyle changes, pharmaceutical and nutraceutical therapy, substrate-based ablative therapy, and neuromodulation, are available to maintain sinus rhythm and might offer a novel holistic strategy to treat AF.</p>","PeriodicalId":18910,"journal":{"name":"Nature Reviews Disease Primers","volume":"8 1","pages":"21"},"PeriodicalIF":76.9000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Disease Primers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41572-022-00347-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia despite substantial efforts to understand the pathophysiology of the condition and develop improved treatments. Identifying the underlying causative mechanisms of AF in individual patients is difficult and the efficacy of current therapies is suboptimal. Consequently, the incidence of AF is steadily rising and there is a pressing need for novel therapies. Research has revealed that defects in specific molecular pathways underlie AF pathogenesis, resulting in electrical conduction disorders that drive AF. The severity of this so-called electropathology correlates with the stage of AF disease progression and determines the response to AF treatment. Therefore, unravelling the molecular mechanisms underlying electropathology is expected to fuel the development of innovative personalized diagnostic tools and mechanism-based therapies. Moreover, the co-creation of AF studies with patients to implement novel diagnostic tools and therapies is a prerequisite for successful personalized AF management. Currently, various treatment modalities targeting AF-related electropathology, including lifestyle changes, pharmaceutical and nutraceutical therapy, substrate-based ablative therapy, and neuromodulation, are available to maintain sinus rhythm and might offer a novel holistic strategy to treat AF.
期刊介绍:
Nature Reviews Disease Primers, a part of the Nature Reviews journal portfolio, features sections on epidemiology, mechanisms, diagnosis, management, and patient quality of life. The editorial team commissions top researchers — comprising basic scientists and clinical researchers — to write the Primers, which are designed for use by early career researchers, medical students and principal investigators. Each Primer concludes with an Outlook section, highlighting future research directions. Covered medical specialties include Cardiology, Dermatology, Ear, Nose and Throat, Emergency Medicine, Endocrinology, Gastroenterology, Genetic Conditions, Gynaecology and Obstetrics, Hepatology, Haematology, Infectious Diseases, Maxillofacial and Oral Medicine, Nephrology, Neurology, Nutrition, Oncology, Ophthalmology, Orthopaedics, Psychiatry, Respiratory Medicine, Rheumatology, Sleep Medicine, and Urology.