Design and Applications of Genetically-Encoded Voltage-Dependent Calcium Channel Inhibitors.

Q1 Pharmacology, Toxicology and Pharmaceutics
Ariana C Gavin, Henry M Colecraft
{"title":"Design and Applications of Genetically-Encoded Voltage-Dependent Calcium Channel Inhibitors.","authors":"Ariana C Gavin,&nbsp;Henry M Colecraft","doi":"10.1007/164_2023_656","DOIUrl":null,"url":null,"abstract":"<p><p>Ca<sup>2+</sup> influx through high-voltage-gated Ca<sup>2+</sup> channels (HVGCCs; Ca<sub>V</sub>1/Ca<sub>V</sub>2) is an exceptionally powerful and versatile signal that controls numerous cell and physiological functions including neurotransmission, muscle contraction, and regulation of gene expression. The impressive ability of a singular signal, Ca<sup>2+</sup> influx, to have such a plethora of functional outcomes is enabled by: molecular diversity of HVGCC pore-forming α<sub>1</sub> and auxiliary subunits; organization of HVGCCs with extrinsic modulatory and effector protein to form discrete macromolecular complexes with unique properties; distinctive distribution of HVGCCs into separate subcellular compartments; and varying expression profiles of HVGCC isoforms among different tissues and organs. The capacity to block HVGCCs with selectivity and specificity with respect to the different levels of their organization is critical for fully understanding the scope of functional consequences of Ca<sup>2+</sup> influx through them, and is also important for realizing their full potential as therapeutic targets. In this review, we discuss the gaps in the current landscape of small-molecule HVGCC blockers and how these may be addressed with designer genetically-encoded Ca<sup>2+</sup> channel inhibitors (GECCIs) that draw inspiration from physiological protein inhibitors of HVGCCs.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":"279 ","pages":"139-155"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2023_656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Ca2+ influx through high-voltage-gated Ca2+ channels (HVGCCs; CaV1/CaV2) is an exceptionally powerful and versatile signal that controls numerous cell and physiological functions including neurotransmission, muscle contraction, and regulation of gene expression. The impressive ability of a singular signal, Ca2+ influx, to have such a plethora of functional outcomes is enabled by: molecular diversity of HVGCC pore-forming α1 and auxiliary subunits; organization of HVGCCs with extrinsic modulatory and effector protein to form discrete macromolecular complexes with unique properties; distinctive distribution of HVGCCs into separate subcellular compartments; and varying expression profiles of HVGCC isoforms among different tissues and organs. The capacity to block HVGCCs with selectivity and specificity with respect to the different levels of their organization is critical for fully understanding the scope of functional consequences of Ca2+ influx through them, and is also important for realizing their full potential as therapeutic targets. In this review, we discuss the gaps in the current landscape of small-molecule HVGCC blockers and how these may be addressed with designer genetically-encoded Ca2+ channel inhibitors (GECCIs) that draw inspiration from physiological protein inhibitors of HVGCCs.

基因编码电压依赖性钙通道抑制剂的设计与应用。
通过高压门控Ca2+通道(HVGCCs)的Ca2+内流CaV1/CaV2)是一个异常强大和多功能的信号,控制许多细胞和生理功能,包括神经传递、肌肉收缩和基因表达调节。单一信号Ca2+内流具有如此多的功能结果的令人印象深刻的能力是通过:HVGCC成孔α1和辅助亚基的分子多样性;外源性调节蛋白和效应蛋白组织hvgc形成具有独特性质的离散大分子复合物;不同的hcv分布在不同的亚细胞区室中;HVGCC亚型在不同组织器官中的表达谱存在差异。对不同组织水平的hvgcc进行选择性和特异性阻断的能力对于充分理解Ca2+内流通过它们的功能后果范围至关重要,对于实现它们作为治疗靶点的全部潜力也很重要。在这篇综述中,我们讨论了目前小分子HVGCC阻滞剂的空白,以及如何用设计遗传编码的Ca2+通道抑制剂(GECCIs)来解决这些问题,这些抑制剂从HVGCC的生理蛋白抑制剂中获得灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Handbook of experimental pharmacology
Handbook of experimental pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.20
自引率
0.00%
发文量
54
期刊介绍: The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信