Green synthesis of silver nanoparticles mediated Azadirachta indica extract and study of their characterization, molecular docking, and antibacterial activity
Ashish A. Gawai, Amol R. Kharat, Shivani S. Chorge, Sachin A. Dhawale
{"title":"Green synthesis of silver nanoparticles mediated Azadirachta indica extract and study of their characterization, molecular docking, and antibacterial activity","authors":"Ashish A. Gawai, Amol R. Kharat, Shivani S. Chorge, Sachin A. Dhawale","doi":"10.1002/jmr.3051","DOIUrl":null,"url":null,"abstract":"<p>The green production of silver nanoparticles (AgNPs) produces AgNPs with minimum influence on the environment by using plant components such as alkaloids, carbohydrates, lipids, enzymes, flavonoids, terpenoids, and polyphenols as reducing agents. In the present investigation, <i>Azadirachta indica</i> leaf extract was used to form AgNPs from a 1 mM silver nitrate solution. The plan proved to be incredibly straightforward, cost-effective, and effective. The production of the nanoparticles was observed visually, where the colorless fluid turns into a brown-colored solution. Further research was carried out using x-ray diffraction, Fourier-transform infrared analysis, scanning electron microscopy, and transmission electron microscopy (TEM) in addition to UV–visible spectroscopy. The size range of AgNPs determined by TEM was 10–30 nm. When the diffusion technique was employed to demonstrate the antibacterial effect of AgNPs on various pathogens, the zones of inhibition for <i>Staphylococcus aureus</i>, <i>Bacillus cereus</i>, and <i>Escherichia coli</i>, when 50 g of AgNPs were used were 16, 12, and 17 mm, respectively. By examining the leakage of reducing sugars and proteins, the mechanism by which nanoparticle antibacterial properties were explored, showed that AgNPs were capable of lowering membrane permeability.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3051","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The green production of silver nanoparticles (AgNPs) produces AgNPs with minimum influence on the environment by using plant components such as alkaloids, carbohydrates, lipids, enzymes, flavonoids, terpenoids, and polyphenols as reducing agents. In the present investigation, Azadirachta indica leaf extract was used to form AgNPs from a 1 mM silver nitrate solution. The plan proved to be incredibly straightforward, cost-effective, and effective. The production of the nanoparticles was observed visually, where the colorless fluid turns into a brown-colored solution. Further research was carried out using x-ray diffraction, Fourier-transform infrared analysis, scanning electron microscopy, and transmission electron microscopy (TEM) in addition to UV–visible spectroscopy. The size range of AgNPs determined by TEM was 10–30 nm. When the diffusion technique was employed to demonstrate the antibacterial effect of AgNPs on various pathogens, the zones of inhibition for Staphylococcus aureus, Bacillus cereus, and Escherichia coli, when 50 g of AgNPs were used were 16, 12, and 17 mm, respectively. By examining the leakage of reducing sugars and proteins, the mechanism by which nanoparticle antibacterial properties were explored, showed that AgNPs were capable of lowering membrane permeability.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.