Biological light-weight materials: The endoskeletons of cephalopod mollusks

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Erika Griesshaber , Antonio G. Checa , Carmen Salas , René Hoffmann , Xiaofei Yin , Rolf Neuser , U. Rupp , Wolfgang W. Schmahl
{"title":"Biological light-weight materials: The endoskeletons of cephalopod mollusks","authors":"Erika Griesshaber ,&nbsp;Antonio G. Checa ,&nbsp;Carmen Salas ,&nbsp;René Hoffmann ,&nbsp;Xiaofei Yin ,&nbsp;Rolf Neuser ,&nbsp;U. Rupp ,&nbsp;Wolfgang W. Schmahl","doi":"10.1016/j.jsb.2023.107988","DOIUrl":null,"url":null,"abstract":"<div><p><span>Structural biological hard tissues fulfill diverse tasks: protection, defence, locomotion, structural support, reinforcement, buoyancy. The cephalopod mollusk </span><em>Spirula spirula</em> has a planspiral, endogastrically coiled, chambered, endoskeleton consisting of the main elements: shell-wall, septum, adapical-ridge, siphuncular-tube. The cephalopod mollusk <span><em>Sepia officinalis</em></span> has an oval, flattened, layered-cellular endoskeleton, formed of the main elements: dorsal-shield, wall/pillar, septum, siphuncular-zone. Both endoskeletons are light-weight buoyancy devices that enable transit through marine environments: vertical (<em>S. spirula</em>), horizontal (<em>S. officinalis</em>). Each skeletal element of the phragmocones has a specific morphology, component structure and organization. The conjunction of the different structural and compositional characteristics renders the evolved nature of the endoskeletons and facilitates for <em>Spirula</em> frequent migration from deep to shallow water and for <em>Sepia</em> coverage over large horizontal distances, without damage of the buoyancy device.</p><p>Based on Electron-Backscatter-Diffraction (EBSD) measurements and TEM, FE-SEM, laser-confocal-microscopy imaging we highlight for each skeletal element of the endoskeleton its specific mineral/biopolymer hybrid nature and constituent arrangement. We demonstrate that a variety of crystal morphologies and biopolymer assemblies are needed for enabling the endoskeleton to act as a buoyancy device. We show that all organic components of the endoskeletons have the structure of cholesteric-liquid-crystals and indicate which feature of the skeletal element yields the necessary mechanical property to enable the endoskeleton to fulfill its function. We juxtapose structural, microstructural, texture characteristics and benefits of coiled and planar endoskeletons and discuss how morphometry tunes structural biomaterial function. Both mollusks use their endoskeleton for buoyancy regulation, live and move, however, in distinct marine environments.</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847723000515","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Structural biological hard tissues fulfill diverse tasks: protection, defence, locomotion, structural support, reinforcement, buoyancy. The cephalopod mollusk Spirula spirula has a planspiral, endogastrically coiled, chambered, endoskeleton consisting of the main elements: shell-wall, septum, adapical-ridge, siphuncular-tube. The cephalopod mollusk Sepia officinalis has an oval, flattened, layered-cellular endoskeleton, formed of the main elements: dorsal-shield, wall/pillar, septum, siphuncular-zone. Both endoskeletons are light-weight buoyancy devices that enable transit through marine environments: vertical (S. spirula), horizontal (S. officinalis). Each skeletal element of the phragmocones has a specific morphology, component structure and organization. The conjunction of the different structural and compositional characteristics renders the evolved nature of the endoskeletons and facilitates for Spirula frequent migration from deep to shallow water and for Sepia coverage over large horizontal distances, without damage of the buoyancy device.

Based on Electron-Backscatter-Diffraction (EBSD) measurements and TEM, FE-SEM, laser-confocal-microscopy imaging we highlight for each skeletal element of the endoskeleton its specific mineral/biopolymer hybrid nature and constituent arrangement. We demonstrate that a variety of crystal morphologies and biopolymer assemblies are needed for enabling the endoskeleton to act as a buoyancy device. We show that all organic components of the endoskeletons have the structure of cholesteric-liquid-crystals and indicate which feature of the skeletal element yields the necessary mechanical property to enable the endoskeleton to fulfill its function. We juxtapose structural, microstructural, texture characteristics and benefits of coiled and planar endoskeletons and discuss how morphometry tunes structural biomaterial function. Both mollusks use their endoskeleton for buoyancy regulation, live and move, however, in distinct marine environments.

生物轻质材料:头足类软体动物的内骨骼
结构生物硬组织完成多种任务:保护、防御、运动、结构支撑、加固、浮力。头足纲软体动物Spirula Spirula有一个平螺旋形、腹内卷曲、有腔的内骨骼,由主要元件组成:壳壁、隔膜、根尖嵴、吸管。头足纲软体动物Sepia officinalis有一个椭圆形、扁平、分层的细胞内骨骼,由主要元素组成:背盾、壁/柱、隔膜、乳头区。这两种内骨骼都是轻型浮力装置,可以在海洋环境中运输:垂直(spirula)和水平(S.officinalis)。膈膜酮的每个骨架元素都有特定的形态、组成结构和组织。不同的结构和组成特征的结合使内骨骼具有进化的性质,有利于螺旋体从深水频繁迁移到浅水,并有利于Sepia在大水平距离上的覆盖,而不会损坏浮力装置。基于电子背散射衍射(EBSD)测量和TEM、FE-SEM、激光共聚焦显微镜成像,我们强调了内骨骼的每个骨骼元素的特定矿物/生物聚合物杂化性质和组成排列。我们证明,需要各种晶体形态和生物聚合物组件才能使内骨骼发挥浮力装置的作用。我们表明,内骨骼的所有有机成分都具有胆甾醇液晶的结构,并表明骨骼元件的哪个特征产生了使内骨骼能够实现其功能所需的机械性能。我们并列了螺旋和平面内骨骼的结构、微观结构、纹理特征和优点,并讨论了形态计量学如何调节结构生物材料的功能。然而,这两种软体动物都利用其内骨骼调节浮力,在不同的海洋环境中生活和移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of structural biology
Journal of structural biology 生物-生化与分子生物学
CiteScore
6.30
自引率
3.30%
发文量
88
审稿时长
65 days
期刊介绍: Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure. Techniques covered include: • Light microscopy including confocal microscopy • All types of electron microscopy • X-ray diffraction • Nuclear magnetic resonance • Scanning force microscopy, scanning probe microscopy, and tunneling microscopy • Digital image processing • Computational insights into structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信