Theory of Allosteric Regulation in Hsp70 Molecular Chaperones.

Q3 Biochemistry, Genetics and Molecular Biology
QRB Discovery Pub Date : 2020-01-01 DOI:10.1017/qrd.2020.10
Wayne A Hendrickson
{"title":"Theory of Allosteric Regulation in Hsp70 Molecular Chaperones.","authors":"Wayne A Hendrickson","doi":"10.1017/qrd.2020.10","DOIUrl":null,"url":null,"abstract":"<p><p>Heat-shock proteins of 70 kDa (Hsp70s) are ubiquitous molecular chaperones that function in protein folding as well as other vital cellular processes. They bind and hydrolyze ATP in a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides in a substrate-binding domain (SBD). However, the molecular mechanism for this allosteric action has remained unclear. Here, we develop and experimentally quantify a theoretical model for Hsp70 allostery based on equilibria among Hsp70 conformational states. We postulate that, when bound to ATP, Hsp70 is in equilibrium between a restraining state (R) that restricts ATP hydrolysis and binds peptides poorly, if at all, and a stimulating state (S) that hydrolyzes ATP relatively rapidly and has high intrinsic substrate affinity but rapid binding kinetics; after the hydrolysis to ADP, NBD and SBD disengage into an uncoupled state (U) that binds peptide substrates tightly, but now with slow kinetics of exchange.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"1 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/qrd.2020.10","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2020.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5

Abstract

Heat-shock proteins of 70 kDa (Hsp70s) are ubiquitous molecular chaperones that function in protein folding as well as other vital cellular processes. They bind and hydrolyze ATP in a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides in a substrate-binding domain (SBD). However, the molecular mechanism for this allosteric action has remained unclear. Here, we develop and experimentally quantify a theoretical model for Hsp70 allostery based on equilibria among Hsp70 conformational states. We postulate that, when bound to ATP, Hsp70 is in equilibrium between a restraining state (R) that restricts ATP hydrolysis and binds peptides poorly, if at all, and a stimulating state (S) that hydrolyzes ATP relatively rapidly and has high intrinsic substrate affinity but rapid binding kinetics; after the hydrolysis to ADP, NBD and SBD disengage into an uncoupled state (U) that binds peptide substrates tightly, but now with slow kinetics of exchange.

Abstract Image

Abstract Image

Abstract Image

Hsp70分子伴侣的变构调控理论。
70 kDa的热休克蛋白(Hsp70s)是普遍存在的分子伴侣蛋白,在蛋白质折叠和其他重要的细胞过程中起作用。它们结合并水解核苷酸结合域(NBD)中的ATP,以控制底物结合域(SBD)中客户多肽的结合和释放。然而,这种变构作用的分子机制尚不清楚。在这里,我们建立并实验量化了一个基于Hsp70构象态平衡的Hsp70变构的理论模型。我们假设,当与ATP结合时,Hsp70处于抑制状态(R)和刺激状态(S)之间的平衡,抑制状态(R)限制ATP水解,如果有的话,结合肽很差,而刺激状态(S)水解ATP相对较快,具有较高的内在底物亲和力,但结合动力学较快;在水解成ADP后,NBD和SBD脱离成解偶联状态(U),与肽底物紧密结合,但现在交换动力学缓慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
QRB Discovery
QRB Discovery Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信