{"title":"Analysis of Clinically Meaningful Change on Patient-Reported Outcomes: Renewed Insights About Covariate Adjustment.","authors":"Joseph C Cappelleri, Paul R Cislo","doi":"10.1080/10543406.2023.2237115","DOIUrl":null,"url":null,"abstract":"<p><p>Determining clinically meaningful change (CMC) in a patient-reported (PRO) measure is central to its existence in gauging how patients feel and function, especially for evaluating a treatment effect. Anchor-based approaches are recommended to estimate a CMC threshold on a PRO measure. Determination of CMC involves linking changes or differences in the target PRO measure to that in an external (anchor) measure that is easier to interpret than and appreciably associated with the PRO measure. One type of anchor-based approach for CMC is the \"mean change method\" where the mean change in score of the target PRO measure within a particular anchor transition level (e.g. one-category improvement) is subtracted from the mean change in score of within an adjacent anchor category (e.g. no change category). In the literature, the mean change method has been applied with and without an adjustment for the baseline scores for the PRO of interest. This article provides the analytic rationale and conceptual justification for keeping the analysis unadjusted and not controlling for baseline PRO scores. Two illustrative examples are highlighted. The current research is essentially a variation of Lord's paradox (where whether to adjust for a baseline variable depends on the research question) placed in a new context. Once the adjustment is made, the resulting CMC estimate reflects an artificial case where the anchor transition levels are forced to have the same average baseline PRO score. The unadjusted estimate acknowledges that the anchor transition levels are naturally occurring (not randomized) groups and thus maintains external validity.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"812-825"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2237115","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Determining clinically meaningful change (CMC) in a patient-reported (PRO) measure is central to its existence in gauging how patients feel and function, especially for evaluating a treatment effect. Anchor-based approaches are recommended to estimate a CMC threshold on a PRO measure. Determination of CMC involves linking changes or differences in the target PRO measure to that in an external (anchor) measure that is easier to interpret than and appreciably associated with the PRO measure. One type of anchor-based approach for CMC is the "mean change method" where the mean change in score of the target PRO measure within a particular anchor transition level (e.g. one-category improvement) is subtracted from the mean change in score of within an adjacent anchor category (e.g. no change category). In the literature, the mean change method has been applied with and without an adjustment for the baseline scores for the PRO of interest. This article provides the analytic rationale and conceptual justification for keeping the analysis unadjusted and not controlling for baseline PRO scores. Two illustrative examples are highlighted. The current research is essentially a variation of Lord's paradox (where whether to adjust for a baseline variable depends on the research question) placed in a new context. Once the adjustment is made, the resulting CMC estimate reflects an artificial case where the anchor transition levels are forced to have the same average baseline PRO score. The unadjusted estimate acknowledges that the anchor transition levels are naturally occurring (not randomized) groups and thus maintains external validity.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.