Structural and functional insights into the Pseudomonas aeruginosa glycosyltransferase WaaG and the implications for lipopolysaccharide biosynthesis.

The Journal of Biological Chemistry Pub Date : 2023-10-01 Epub Date: 2023-09-15 DOI:10.1016/j.jbc.2023.105256
Emma R Scaletti, Pontus Pettersson, Joan Patrick, Patrick J Shilling, Robert Gustafsson Westergren, Daniel O Daley, Lena Mäler, Göran Widmalm, Pål Stenmark
{"title":"Structural and functional insights into the Pseudomonas aeruginosa glycosyltransferase WaaG and the implications for lipopolysaccharide biosynthesis.","authors":"Emma R Scaletti,&nbsp;Pontus Pettersson,&nbsp;Joan Patrick,&nbsp;Patrick J Shilling,&nbsp;Robert Gustafsson Westergren,&nbsp;Daniel O Daley,&nbsp;Lena Mäler,&nbsp;Göran Widmalm,&nbsp;Pål Stenmark","doi":"10.1016/j.jbc.2023.105256","DOIUrl":null,"url":null,"abstract":"<p><p>The glycosyltransferase WaaG in Pseudomonas aeruginosa (PaWaaG) is involved in the synthesis of the core region of lipopolysaccharides. It is a promising target for developing adjuvants that could help in the uptake of antibiotics. Herein, we have determined structures of PaWaaG in complex with the nucleotide-sugars UDP-glucose, UDP-galactose, and UDP-GalNAc. Structural comparison with the homolog from Escherichia coli (EcWaaG) revealed five key differences in the sugar-binding pocket. Solution-state NMR analysis showed that WT PaWaaG specifically hydrolyzes UDP-GalNAc and unlike EcWaaG, does not hydrolyze UDP-glucose. Furthermore, we found that a PaWaaG mutant (Y97F/T208R/N282A/T283A/T285I) designed to resemble the EcWaaG sugar binding site, only hydrolyzed UDP-glucose, underscoring the importance of the identified amino acids in substrate specificity. However, neither WT PaWaaG nor the PaWaaG mutant capable of hydrolyzing UDP-glucose was able to complement an E. coli ΔwaaG strain, indicating that more remains to be uncovered about the function of PaWaaG in vivo. This structural and biochemical information will guide future structure-based drug design efforts targeting PaWaaG.</p>","PeriodicalId":22621,"journal":{"name":"The Journal of Biological Chemistry","volume":" ","pages":"105256"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Biological Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jbc.2023.105256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The glycosyltransferase WaaG in Pseudomonas aeruginosa (PaWaaG) is involved in the synthesis of the core region of lipopolysaccharides. It is a promising target for developing adjuvants that could help in the uptake of antibiotics. Herein, we have determined structures of PaWaaG in complex with the nucleotide-sugars UDP-glucose, UDP-galactose, and UDP-GalNAc. Structural comparison with the homolog from Escherichia coli (EcWaaG) revealed five key differences in the sugar-binding pocket. Solution-state NMR analysis showed that WT PaWaaG specifically hydrolyzes UDP-GalNAc and unlike EcWaaG, does not hydrolyze UDP-glucose. Furthermore, we found that a PaWaaG mutant (Y97F/T208R/N282A/T283A/T285I) designed to resemble the EcWaaG sugar binding site, only hydrolyzed UDP-glucose, underscoring the importance of the identified amino acids in substrate specificity. However, neither WT PaWaaG nor the PaWaaG mutant capable of hydrolyzing UDP-glucose was able to complement an E. coli ΔwaaG strain, indicating that more remains to be uncovered about the function of PaWaaG in vivo. This structural and biochemical information will guide future structure-based drug design efforts targeting PaWaaG.

Abstract Image

Abstract Image

Abstract Image

铜绿假单胞菌糖基转移酶WaaG的结构和功能见解及其对脂多糖生物合成的影响。
铜绿假单胞菌中的糖基转移酶WaaG参与脂多糖核心区域的合成。它是开发佐剂的一个很有前途的靶点,可以帮助抗生素的吸收。在此,我们已经确定了PaWaaG与核苷酸糖UDP葡萄糖、UDP半乳糖和UDP GalNAc复合物的结构。与大肠杆菌同源物(EcWaaG)的结构比较揭示了糖结合口袋的五个关键差异。溶液态NMR分析表明,WT PaWaaG特异性水解UDP-GalNAc,与EcWaaG不同,它不水解UDP葡萄糖。此外,我们发现PaWaaG突变体(Y97F/T208R/N282A/T283A/T285I)被设计为类似于EcWaaG糖结合位点,仅水解UDP葡萄糖,这突出了所鉴定的氨基酸在底物特异性中的重要性。然而,无论是WT PaWaaG还是能够水解UDP葡萄糖的PaWaaG突变体都不能与大肠杆菌ΔwaaG菌株互补,这表明关于PaWaaG在体内的功能还有更多的有待揭示。这些结构和生物化学信息将指导未来针对PaWaaG的基于结构的药物设计工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信