Daniel G. Olson, Marybeth I. Maloney, Anthony A. Lanahan, Nicholas D. Cervenka, Ying Xia, Angel Pech-Canul, Shuen Hon, Liang Tian, Samantha J. Ziegler, Yannick J. Bomble, Lee R. Lynd
{"title":"Ethanol tolerance in engineered strains of Clostridium thermocellum","authors":"Daniel G. Olson, Marybeth I. Maloney, Anthony A. Lanahan, Nicholas D. Cervenka, Ying Xia, Angel Pech-Canul, Shuen Hon, Liang Tian, Samantha J. Ziegler, Yannick J. Bomble, Lee R. Lynd","doi":"10.1186/s13068-023-02379-z","DOIUrl":null,"url":null,"abstract":"<div><p><i>Clostridium thermocellum</i> is a natively cellulolytic bacterium that is promising candidate for cellulosic biofuel production, and can produce ethanol at high yields (75–80% of theoretical) but the ethanol titers produced thus far are too low for commercial application. In several strains of <i>C. thermocellum</i> engineered for increased ethanol yield, ethanol titer seems to be limited by ethanol tolerance. Previous work to improve ethanol tolerance has focused on the WT organism. In this work, we focused on understanding ethanol tolerance in several engineered strains of <i>C. thermocellum</i>. We observed a tradeoff between ethanol tolerance and production. Adaptation for increased ethanol tolerance decreases ethanol production. Second, we observed a consistent genetic response to ethanol stress involving mutations at the AdhE locus. These mutations typically reduced NADH-linked ADH activity. About half of the ethanol tolerance phenotype could be attributed to the elimination of NADH-linked activity based on a targeted deletion of <i>adhE</i>. Finally, we observed that rich growth medium increases ethanol tolerance, but this effect is eliminated in an <i>adhE</i> deletion strain. Together, these suggest that ethanol inhibits growth and metabolism via a redox-imbalance mechanism. The improved understanding of mechanisms of ethanol tolerance described here lays a foundation for developing strains of <i>C. thermocellum</i> with improved ethanol production.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"16 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503014/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-023-02379-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clostridium thermocellum is a natively cellulolytic bacterium that is promising candidate for cellulosic biofuel production, and can produce ethanol at high yields (75–80% of theoretical) but the ethanol titers produced thus far are too low for commercial application. In several strains of C. thermocellum engineered for increased ethanol yield, ethanol titer seems to be limited by ethanol tolerance. Previous work to improve ethanol tolerance has focused on the WT organism. In this work, we focused on understanding ethanol tolerance in several engineered strains of C. thermocellum. We observed a tradeoff between ethanol tolerance and production. Adaptation for increased ethanol tolerance decreases ethanol production. Second, we observed a consistent genetic response to ethanol stress involving mutations at the AdhE locus. These mutations typically reduced NADH-linked ADH activity. About half of the ethanol tolerance phenotype could be attributed to the elimination of NADH-linked activity based on a targeted deletion of adhE. Finally, we observed that rich growth medium increases ethanol tolerance, but this effect is eliminated in an adhE deletion strain. Together, these suggest that ethanol inhibits growth and metabolism via a redox-imbalance mechanism. The improved understanding of mechanisms of ethanol tolerance described here lays a foundation for developing strains of C. thermocellum with improved ethanol production.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis