Disruption of Synaptic Endoplasmic Reticulum Luminal Protein Containment in Drosophila Atlastin Mutants.

Mónica C Quiñones-Frías, Dina M Ocken, Avital Rodal
{"title":"Disruption of Synaptic Endoplasmic Reticulum Luminal Protein Containment in <i>Drosophila Atlastin</i> Mutants.","authors":"Mónica C Quiñones-Frías, Dina M Ocken, Avital Rodal","doi":"10.1101/2023.09.01.555994","DOIUrl":null,"url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) extends throughout neurons and regulates many neuronal functions, including neurite outgrowth, neurotransmission, and synaptic plasticity. Mutations in proteins that control ER shape are linked to the neurodegenerative disorder Hereditary Spastic Paraplegia (HSP), yet the ultrastructure and dynamics of neuronal ER remain largely unexplored, especially at presynaptic terminals. Using super-resolution and live imaging in <i>D. melanogaster</i> larval motor neurons, we investigated ER structure at presynaptic terminals of wild-type animals and null mutants of the ER shaping protein and HSP-linked gene, Atlastin. Previous studies using an ER luminal marker reported diffuse localization at <i>Atlastin</i> mutant presynaptic terminals, which was attributed to ER fragmentation. However, using an ER membrane marker, we discovered that <i>Atlastin</i> mutant ER forms robust networks with only mild defects in structural dynamics, indicating the primary defect is functional rather than architectural. We demonstrate that <i>Atlastin</i> mutants progressively displace overexpressed luminal ER proteins to the cytosol during larval development, specifically at synapses, while these proteins remain correctly localized in cell bodies, axons, and muscles. This synaptic-specific displacement phenotype, previously unreported in non-neuronal cells, emphasizes the importance of studying neurons to understand HSP pathogenesis.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c6/5c/nihpp-2023.09.01.555994v1.PMC10491308.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.01.555994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The endoplasmic reticulum (ER) extends throughout neurons and regulates many neuronal functions, including neurite outgrowth, neurotransmission, and synaptic plasticity. Mutations in proteins that control ER shape are linked to the neurodegenerative disorder Hereditary Spastic Paraplegia (HSP), yet the ultrastructure and dynamics of neuronal ER remain largely unexplored, especially at presynaptic terminals. Using super-resolution and live imaging in D. melanogaster larval motor neurons, we investigated ER structure at presynaptic terminals of wild-type animals and null mutants of the ER shaping protein and HSP-linked gene, Atlastin. Previous studies using an ER luminal marker reported diffuse localization at Atlastin mutant presynaptic terminals, which was attributed to ER fragmentation. However, using an ER membrane marker, we discovered that Atlastin mutant ER forms robust networks with only mild defects in structural dynamics, indicating the primary defect is functional rather than architectural. We demonstrate that Atlastin mutants progressively displace overexpressed luminal ER proteins to the cytosol during larval development, specifically at synapses, while these proteins remain correctly localized in cell bodies, axons, and muscles. This synaptic-specific displacement phenotype, previously unreported in non-neuronal cells, emphasizes the importance of studying neurons to understand HSP pathogenesis.

Abstract Image

Abstract Image

Abstract Image

Atlastin突变体突触前ER网络的高分辨率成像。
内质网(ER)是一种延伸到神经元外围的连续细胞器,调节许多神经元功能,包括轴突生长、神经传递和突触可塑性。控制ER形状的蛋白质突变与神经退行性疾病遗传性痉挛性截瘫(HSP)有关。然而,神经元内质网的超微结构和动力学研究不足,尤其是在突触前终末。在这里,我们在黑腹果蝇幼虫运动神经元中开发了新的超分辨率和实时成像方法,以研究野生型动物突触前末端的ER结构,以及HSP基因Atlastin的无效突变体。先前的研究表明,ER管腔标记物在Atlastin突变突触前终末的弥漫性定位,这归因于ER碎裂。相反,我们使用ER膜标记发现,Atlastin突变体中的ER形成了强大的网络。此外,我们的高分辨率成像结果表明,Atlastin突变体中管腔ER蛋白的过度表达导致其在突触处进行性移位到胞质溶胶,这可能是由于蛋白静态应激和/或ER膜完整性的变化。值得注意的是,这些管腔ER蛋白在细胞体、轴突和其他细胞类型(如体壁肌肉)中保持正确定位,这表明突触处的ER小管具有独特的结构和功能特征。在非神经元细胞中对Atlastin的大量研究中,这种置换表型尚未报道,强调了在研究HSP中导致上运动神经元功能障碍的机制时,在神经元中进行实验的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信