SIMVI reveals intrinsic and spatial-induced states in spatial omics data.

Mingze Dong, David Su, Harriet Kluger, Rong Fan, Yuval Kluger
{"title":"SIMVI reveals intrinsic and spatial-induced states in spatial omics data.","authors":"Mingze Dong, David Su, Harriet Kluger, Rong Fan, Yuval Kluger","doi":"10.1101/2023.08.28.554970","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial omics technologies enable the analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to capture spatial regulations for further biological discoveries. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free framework that disentangles cell intrinsic and spatial-induced latent variables for modeling gene expression in spatial omics data. We derive theoretical support for SIMVI in disentangling intrinsic and spatial-induced variations. By this disentanglement, SIMVI enables estimation of spatial effects (SE) at a single-cell resolution, and opens up various opportunities for novel downstream analyses. To demonstrate the potential of SIMVI, we applied SIMVI to spatial omics data from diverse platforms and tissues (MERFISH human cortex, Slide-seqv2 mouse hippocampus, Slide-tags human tonsil, spatial multiome human melanoma, cohort-level CosMx melanoma). In all tested datasets, SIMVI effectively disentangles variations and infers accurate spatial effects compared with alternative methods. Moreover, on these datasets, SIMVI uniquely uncovers complex spatial regulations and dynamics of biological significance. In the human tonsil data, SIMVI illuminates the cyclical spatial dynamics of germinal center B cells during maturation. Applying SIMVI to both RNA and ATAC modalities of the multiome melanoma data reveals potential tumor epigenetic reprogramming states. Application of SIMVI on our newly-collected cohort-level CosMx melanoma dataset uncovers space-and-outcome-dependent macrophage states and the underlying cellular communication machinery in the tumor microenvironments.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/94/nihpp-2023.08.28.554970v1.PMC10491129.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.08.28.554970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial omics technologies enable the analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to capture spatial regulations for further biological discoveries. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free framework that disentangles cell intrinsic and spatial-induced latent variables for modeling gene expression in spatial omics data. We derive theoretical support for SIMVI in disentangling intrinsic and spatial-induced variations. By this disentanglement, SIMVI enables estimation of spatial effects (SE) at a single-cell resolution, and opens up various opportunities for novel downstream analyses. To demonstrate the potential of SIMVI, we applied SIMVI to spatial omics data from diverse platforms and tissues (MERFISH human cortex, Slide-seqv2 mouse hippocampus, Slide-tags human tonsil, spatial multiome human melanoma, cohort-level CosMx melanoma). In all tested datasets, SIMVI effectively disentangles variations and infers accurate spatial effects compared with alternative methods. Moreover, on these datasets, SIMVI uniquely uncovers complex spatial regulations and dynamics of biological significance. In the human tonsil data, SIMVI illuminates the cyclical spatial dynamics of germinal center B cells during maturation. Applying SIMVI to both RNA and ATAC modalities of the multiome melanoma data reveals potential tumor epigenetic reprogramming states. Application of SIMVI on our newly-collected cohort-level CosMx melanoma dataset uncovers space-and-outcome-dependent macrophage states and the underlying cellular communication machinery in the tumor microenvironments.

Abstract Image

Abstract Image

Abstract Image

SIMVI揭示了空间组学数据中的内在状态和空间诱导状态。
空间组学分析与组织结构和功能相关的基因表达和相互作用动力学。然而,现有的方法无法对空间组学数据中的内在和空间诱导的变化进行建模,从而无法识别真正的空间相互作用效应。在这里,我们提出了使用变分推理(SIMVI)的空间相互作用建模,这是一个无注释的框架,可以解开细胞内在和空间诱导的潜在变量,用于建模空间组学数据中的基因表达。SIMVI实现了新的下游分析,如基于解纠缠表示的聚类和差异表达分析、空间效应(SE)识别、SE解释以及对新测量/模式的迁移学习。我们在模拟和真实数据集上对SIMVI进行了基准测试,并表明SIMVI在合成数据集中唯一地生成了高度准确的SE推断,并揭示了复杂真实数据集中的内在变化。我们将SIMVI应用于来自不同平台和组织(MERFISH人类皮层/小鼠肝脏、Slide-seq2小鼠海马、spatial ATAC RNA-seq)的空间组学数据,并揭示了各种区域特异性和细胞类型特异性的空间相互作用。此外,我们在MERFISH人类皮层和空间ATAC RNA-seq上的实验展示了SIMVI在识别新样本/模式的SE方面的能力。最后,我们将SIMVI应用于新收集的CosMx黑色素瘤数据集。使用SIMVI,我们鉴定了与空间依赖性相互作用相关的免疫细胞,并揭示了与患者结果相关的潜在空间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信