The time-resolved genomic impact of Wnt/β-catenin signaling.

IF 9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pierfrancesco Pagella, Simon Söderholm, Anna Nordin, Gianluca Zambanini, Valeria Ghezzi, Amaia Jauregi-Miguel, Claudio Cantù
{"title":"The time-resolved genomic impact of Wnt/β-catenin signaling.","authors":"Pierfrancesco Pagella,&nbsp;Simon Söderholm,&nbsp;Anna Nordin,&nbsp;Gianluca Zambanini,&nbsp;Valeria Ghezzi,&nbsp;Amaia Jauregi-Miguel,&nbsp;Claudio Cantù","doi":"10.1016/j.cels.2023.06.004","DOIUrl":null,"url":null,"abstract":"<p><p>Wnt signaling orchestrates gene expression via its effector, β-catenin. However, it is unknown whether β-catenin binds its target genomic regions simultaneously and how this impacts chromatin dynamics to modulate cell behavior. Using a combination of time-resolved CUT&RUN against β-catenin, ATAC-seq, and perturbation assays in different cell types, we show that Wnt/β-catenin physical targets are tissue-specific, β-catenin \"moves\" on different loci over time, and its association to DNA accompanies changing chromatin accessibility landscapes that determine cell behavior. In particular, Wnt/β-catenin progressively shapes the chromatin of human embryonic stem cells (hESCs) as they undergo mesodermal differentiation, a behavior that we define as \"plastic.\" In HEK293T cells, on the other hand, Wnt/β-catenin drives a transient chromatin opening, followed by re-establishment of the pre-stimulation state, a response that we define as \"elastic.\" Future experiments shall assess whether other cell communication mechanisms, in addition to Wnt signaling, are ruled by time, cellular idiosyncrasies, and chromatin constraints. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 7","pages":"563-581.e7"},"PeriodicalIF":9.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.06.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wnt signaling orchestrates gene expression via its effector, β-catenin. However, it is unknown whether β-catenin binds its target genomic regions simultaneously and how this impacts chromatin dynamics to modulate cell behavior. Using a combination of time-resolved CUT&RUN against β-catenin, ATAC-seq, and perturbation assays in different cell types, we show that Wnt/β-catenin physical targets are tissue-specific, β-catenin "moves" on different loci over time, and its association to DNA accompanies changing chromatin accessibility landscapes that determine cell behavior. In particular, Wnt/β-catenin progressively shapes the chromatin of human embryonic stem cells (hESCs) as they undergo mesodermal differentiation, a behavior that we define as "plastic." In HEK293T cells, on the other hand, Wnt/β-catenin drives a transient chromatin opening, followed by re-establishment of the pre-stimulation state, a response that we define as "elastic." Future experiments shall assess whether other cell communication mechanisms, in addition to Wnt signaling, are ruled by time, cellular idiosyncrasies, and chromatin constraints. A record of this paper's transparent peer review process is included in the supplemental information.

Abstract Image

Wnt/β-catenin信号的时间解析基因组影响。
Wnt信号通过其效应物β-连环蛋白协调基因表达。然而,目前尚不清楚β-连环蛋白是否同时结合其靶基因组区域,以及这如何影响染色质动力学来调节细胞行为。通过对不同细胞类型的β-catenin进行时间分辨的cut和run、ATAC-seq和扰动分析,我们发现Wnt/β-catenin的物理靶标是组织特异性的,β-catenin随着时间的推移在不同的位点上“移动”,并且它与DNA的关联伴随着染色质可及性的变化,从而决定细胞的行为。特别是,Wnt/β-catenin在人类胚胎干细胞(hESCs)经历中胚层分化时逐渐形成染色质,我们将这种行为定义为“可塑性”。另一方面,在HEK293T细胞中,Wnt/β-catenin驱动短暂的染色质打开,随后重建预刺激状态,我们将这种反应定义为“弹性”。未来的实验将评估除了Wnt信号外,其他细胞通讯机制是否受时间、细胞特质和染色质限制的支配。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Systems
Cell Systems Medicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍: In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信