Liangliang Yang, Yang Gao, Jinlong Huang, Hantao Yang, Puyuan Zhao, Chen Li, Zhigang Yang
{"title":"LncRNA Gm44206 Promotes Microglial Pyroptosis Through NLRP3/Caspase-1/GSDMD Axis and Aggravate Cerebral Ischemia-Reperfusion Injury.","authors":"Liangliang Yang, Yang Gao, Jinlong Huang, Hantao Yang, Puyuan Zhao, Chen Li, Zhigang Yang","doi":"10.1089/dna.2023.0106","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibition of the inflammatory response triggered by microglial pyroptosis inflammatory activation may be one of the effective ways to alleviate cerebral ischemia-reperfusion injury, the specific mechanism of which remains unclear. In this study, BV-2 microglia with or without oxygen-glucose deprivation/reoxygenation (OGD/R) or long noncoding RNA (lncRNA) Gm44206 knockdown were used as cell models to conduct an <i>in vitro</i> study. Detection of lactate dehydrogenase release and pyroptosis-related protein levels was performed using a corresponding kit and western blotting, respectively. Proliferation of microglia was evaluated by CCK8 assay. Enzyme-linked immunosorbent assay was applied for measuring levels of proinflammatory cytokines. This study verified the involvement of microglial pyroptosis as well as upregulation of NLRP3, Caspase-1, GSDMD, and Apoptosis-associated Speck-like protein containing a C-terminal caspase-recruitment domain (ASC) in cerebral ischemia-reperfusion injury. Moreover, knockdown of lncRNA Gm44206 could alleviate OGD/R-induced microglial pyroptosis and cell proliferation inhibition through the NLRP3/Caspase-1/GSDMD pathway, thus decreasing the release of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-18, and tumor necrosis factor-alpha. In conclusion, this study established a correlation between microglial pyroptosis and cerebral ischemia-reperfusion injury and identified lncRNA Gm44206 as a potential regulator of NLRP3/Caspase-1/GSDMD axis-mediated microglial pyroptosis, which could be considered a promising therapeutic target.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2023.0106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Inhibition of the inflammatory response triggered by microglial pyroptosis inflammatory activation may be one of the effective ways to alleviate cerebral ischemia-reperfusion injury, the specific mechanism of which remains unclear. In this study, BV-2 microglia with or without oxygen-glucose deprivation/reoxygenation (OGD/R) or long noncoding RNA (lncRNA) Gm44206 knockdown were used as cell models to conduct an in vitro study. Detection of lactate dehydrogenase release and pyroptosis-related protein levels was performed using a corresponding kit and western blotting, respectively. Proliferation of microglia was evaluated by CCK8 assay. Enzyme-linked immunosorbent assay was applied for measuring levels of proinflammatory cytokines. This study verified the involvement of microglial pyroptosis as well as upregulation of NLRP3, Caspase-1, GSDMD, and Apoptosis-associated Speck-like protein containing a C-terminal caspase-recruitment domain (ASC) in cerebral ischemia-reperfusion injury. Moreover, knockdown of lncRNA Gm44206 could alleviate OGD/R-induced microglial pyroptosis and cell proliferation inhibition through the NLRP3/Caspase-1/GSDMD pathway, thus decreasing the release of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-18, and tumor necrosis factor-alpha. In conclusion, this study established a correlation between microglial pyroptosis and cerebral ischemia-reperfusion injury and identified lncRNA Gm44206 as a potential regulator of NLRP3/Caspase-1/GSDMD axis-mediated microglial pyroptosis, which could be considered a promising therapeutic target.