Liangliang Yang, Yang Gao, Jinlong Huang, Hantao Yang, Puyuan Zhao, Chen Li, Zhigang Yang
{"title":"LncRNA Gm44206 Promotes Microglial Pyroptosis Through NLRP3/Caspase-1/GSDMD Axis and Aggravate Cerebral Ischemia-Reperfusion Injury.","authors":"Liangliang Yang, Yang Gao, Jinlong Huang, Hantao Yang, Puyuan Zhao, Chen Li, Zhigang Yang","doi":"10.1089/dna.2023.0106","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibition of the inflammatory response triggered by microglial pyroptosis inflammatory activation may be one of the effective ways to alleviate cerebral ischemia-reperfusion injury, the specific mechanism of which remains unclear. In this study, BV-2 microglia with or without oxygen-glucose deprivation/reoxygenation (OGD/R) or long noncoding RNA (lncRNA) Gm44206 knockdown were used as cell models to conduct an <i>in vitro</i> study. Detection of lactate dehydrogenase release and pyroptosis-related protein levels was performed using a corresponding kit and western blotting, respectively. Proliferation of microglia was evaluated by CCK8 assay. Enzyme-linked immunosorbent assay was applied for measuring levels of proinflammatory cytokines. This study verified the involvement of microglial pyroptosis as well as upregulation of NLRP3, Caspase-1, GSDMD, and Apoptosis-associated Speck-like protein containing a C-terminal caspase-recruitment domain (ASC) in cerebral ischemia-reperfusion injury. Moreover, knockdown of lncRNA Gm44206 could alleviate OGD/R-induced microglial pyroptosis and cell proliferation inhibition through the NLRP3/Caspase-1/GSDMD pathway, thus decreasing the release of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-18, and tumor necrosis factor-alpha. In conclusion, this study established a correlation between microglial pyroptosis and cerebral ischemia-reperfusion injury and identified lncRNA Gm44206 as a potential regulator of NLRP3/Caspase-1/GSDMD axis-mediated microglial pyroptosis, which could be considered a promising therapeutic target.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"42 9","pages":"554-562"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2023.0106","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inhibition of the inflammatory response triggered by microglial pyroptosis inflammatory activation may be one of the effective ways to alleviate cerebral ischemia-reperfusion injury, the specific mechanism of which remains unclear. In this study, BV-2 microglia with or without oxygen-glucose deprivation/reoxygenation (OGD/R) or long noncoding RNA (lncRNA) Gm44206 knockdown were used as cell models to conduct an in vitro study. Detection of lactate dehydrogenase release and pyroptosis-related protein levels was performed using a corresponding kit and western blotting, respectively. Proliferation of microglia was evaluated by CCK8 assay. Enzyme-linked immunosorbent assay was applied for measuring levels of proinflammatory cytokines. This study verified the involvement of microglial pyroptosis as well as upregulation of NLRP3, Caspase-1, GSDMD, and Apoptosis-associated Speck-like protein containing a C-terminal caspase-recruitment domain (ASC) in cerebral ischemia-reperfusion injury. Moreover, knockdown of lncRNA Gm44206 could alleviate OGD/R-induced microglial pyroptosis and cell proliferation inhibition through the NLRP3/Caspase-1/GSDMD pathway, thus decreasing the release of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-18, and tumor necrosis factor-alpha. In conclusion, this study established a correlation between microglial pyroptosis and cerebral ischemia-reperfusion injury and identified lncRNA Gm44206 as a potential regulator of NLRP3/Caspase-1/GSDMD axis-mediated microglial pyroptosis, which could be considered a promising therapeutic target.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.