Tomas Perecko, Jana Pereckova, Zuzana Hoferova, Martin Falk
{"title":"Cell-type specific anti-cancerous effects of nitro-oleic acid and its combination with gamma irradiation.","authors":"Tomas Perecko, Jana Pereckova, Zuzana Hoferova, Martin Falk","doi":"10.1515/hsz-2023-0150","DOIUrl":null,"url":null,"abstract":"<p><p>Nitro-fatty acids (NFAs) are endogenous lipid mediators capable of post-translational modifications of selected regulatory proteins. Here, we investigated the anti-cancerous effects of nitro-oleic acid (NO<sub>2</sub>OA) and its combination with gamma irradiation on different cancer cell lines. The effects of NO<sub>2</sub>OA on cell death, cell cycle distribution, or expression of p21 and cyclin D1 proteins were analyzed in cancer (A-549, HT-29 and FaDu) or normal cell lines (HGF, HFF-1). Dose enhancement ratio at 50 % survival fraction (DER<sub>IC50</sub>) was calculated for samples pre-treated with NO<sub>2</sub>OA followed by gamma irradiation. NO<sub>2</sub>OA suppressed viability and induced apoptotic cell death. These effects were cell line specific but not in general selective for cancer cells. HT-29 cell line exerted higher sensitivity toward NO<sub>2</sub>OA treatment among cancer cell lines tested: induction of cell cycle arrest in the G2/M phase was associated with an increase in p21 and a decrease in cyclin D1 expression. Pre-treatment of HT-29 cells with NO<sub>2</sub>OA prior irradiation showed a significantly increased DER<sub>IC50</sub>, demonstrating radiosensitizing effects. In conclusion, NO<sub>2</sub>OA exhibited potential for combined chemoradiotherapy. Our results encourage the development of new NFAs with improved features for cancer chemoradiation.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"177-187"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2023-0150","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/25 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitro-fatty acids (NFAs) are endogenous lipid mediators capable of post-translational modifications of selected regulatory proteins. Here, we investigated the anti-cancerous effects of nitro-oleic acid (NO2OA) and its combination with gamma irradiation on different cancer cell lines. The effects of NO2OA on cell death, cell cycle distribution, or expression of p21 and cyclin D1 proteins were analyzed in cancer (A-549, HT-29 and FaDu) or normal cell lines (HGF, HFF-1). Dose enhancement ratio at 50 % survival fraction (DERIC50) was calculated for samples pre-treated with NO2OA followed by gamma irradiation. NO2OA suppressed viability and induced apoptotic cell death. These effects were cell line specific but not in general selective for cancer cells. HT-29 cell line exerted higher sensitivity toward NO2OA treatment among cancer cell lines tested: induction of cell cycle arrest in the G2/M phase was associated with an increase in p21 and a decrease in cyclin D1 expression. Pre-treatment of HT-29 cells with NO2OA prior irradiation showed a significantly increased DERIC50, demonstrating radiosensitizing effects. In conclusion, NO2OA exhibited potential for combined chemoradiotherapy. Our results encourage the development of new NFAs with improved features for cancer chemoradiation.
期刊介绍:
Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.