Daniel Polasek , Andreas Flicker , Christian Fiedler , Maria R. Farcet , Martin Purtscher , Thomas R. Kreil
{"title":"On-column virus inactivation by solvent/detergent treatment for a recombinant biological product","authors":"Daniel Polasek , Andreas Flicker , Christian Fiedler , Maria R. Farcet , Martin Purtscher , Thomas R. Kreil","doi":"10.1016/j.biologicals.2023.101693","DOIUrl":null,"url":null,"abstract":"<div><p>Each process step in the manufacture of biological products requires expensive resources and reduces total process productivity. Since downstream processing of biologicals is the main cost driver, process intensification is a persistent topic during the entire product life cycle. We present here one approach for the intensification of bioprocesses by applying on-column virus inactivation using solvent/detergent (S/D) treatment during ion-exchange chromatography. The established purification process of a recombinant protein was used as a model to compare key process parameters (i.e., product yield, specific activity, impurity clearance) of the novel approach to the standard process protocol. Additional wash and incubation steps with and without S/D-containing buffers were introduced to ensure sufficient contact time to effectively eliminate enveloped viruses and to significantly decrease the amount of S/D reagents. Comparison of key process parameters demonstrated equivalent process performance. To assess the viral clearance capacity of the novel approach, XMuLV was spiked as model virus to the chromatographic load and all resulting fractions were analyzed by TCID<sub>50</sub> and RT-qPCR. Data indicates the inactivation capability of on-column virus inactivation even at 10% of the nominal S/D concentration, although the mechanism of viral clearance needs further investigation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045105623000313","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Each process step in the manufacture of biological products requires expensive resources and reduces total process productivity. Since downstream processing of biologicals is the main cost driver, process intensification is a persistent topic during the entire product life cycle. We present here one approach for the intensification of bioprocesses by applying on-column virus inactivation using solvent/detergent (S/D) treatment during ion-exchange chromatography. The established purification process of a recombinant protein was used as a model to compare key process parameters (i.e., product yield, specific activity, impurity clearance) of the novel approach to the standard process protocol. Additional wash and incubation steps with and without S/D-containing buffers were introduced to ensure sufficient contact time to effectively eliminate enveloped viruses and to significantly decrease the amount of S/D reagents. Comparison of key process parameters demonstrated equivalent process performance. To assess the viral clearance capacity of the novel approach, XMuLV was spiked as model virus to the chromatographic load and all resulting fractions were analyzed by TCID50 and RT-qPCR. Data indicates the inactivation capability of on-column virus inactivation even at 10% of the nominal S/D concentration, although the mechanism of viral clearance needs further investigation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.