Yuqiang Shen, Zhe Chen, Jijun Tong, Nan Jiang, Yun Ning
{"title":"DBCU-Net: deep learning approach for segmentation of coronary angiography images.","authors":"Yuqiang Shen, Zhe Chen, Jijun Tong, Nan Jiang, Yun Ning","doi":"10.1007/s10554-023-02849-3","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary angiography (CAG) is the \"gold standard\" for diagnosing coronary artery disease (CAD). However, due to the limitation of current imaging methods, the CAG image has low resolution and poor contrast with a lot of artifacts and noise, which makes it difficult for blood vessels segmentation. In this paper, we propose a DBCU-Net for automatic segmentation of CAG images, which is an extension of U-Net, DenseNet with bi-directional ConvLSTM(BConvLSTM). The main contribution of our network is that instead of convolution in the feature extraction of U-Net, we incorporate dense connectivity and the bi-directional ConvLSTM to highlight salient features. We conduct our experiment on our private dataset, and achieve average Accuracy, Precision, Recall and F1-score for coronary artery segmentation of 0.985, 0.913, 0.847 and 0.879 respectively.</p>","PeriodicalId":50332,"journal":{"name":"International Journal of Cardiovascular Imaging","volume":"39 8","pages":"1571-1579"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cardiovascular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10554-023-02849-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Coronary angiography (CAG) is the "gold standard" for diagnosing coronary artery disease (CAD). However, due to the limitation of current imaging methods, the CAG image has low resolution and poor contrast with a lot of artifacts and noise, which makes it difficult for blood vessels segmentation. In this paper, we propose a DBCU-Net for automatic segmentation of CAG images, which is an extension of U-Net, DenseNet with bi-directional ConvLSTM(BConvLSTM). The main contribution of our network is that instead of convolution in the feature extraction of U-Net, we incorporate dense connectivity and the bi-directional ConvLSTM to highlight salient features. We conduct our experiment on our private dataset, and achieve average Accuracy, Precision, Recall and F1-score for coronary artery segmentation of 0.985, 0.913, 0.847 and 0.879 respectively.
期刊介绍:
The International Journal of Cardiovascular Imaging publishes technical and clinical communications (original articles, review articles and editorial comments) associated with cardiovascular diseases. The technical communications include the research, development and evaluation of novel imaging methods in the various imaging domains. These domains include magnetic resonance imaging, computed tomography, X-ray imaging, intravascular imaging, and applications in nuclear cardiology and echocardiography, and any combination of these techniques. Of particular interest are topics in medical image processing and image-guided interventions. Clinical applications of such imaging techniques include improved diagnostic approaches, treatment , prognosis and follow-up of cardiovascular patients. Topics include: multi-center or larger individual studies dealing with risk stratification and imaging utilization, applications for better characterization of cardiovascular diseases, and assessment of the efficacy of new drugs and interventional devices.