Nan Hu, Xi-Ming Mo, Shi-Na Xu, Hao-Neng Tang, Ying-Hui Zhou, Long Li, Hou-De Zhou
{"title":"A novel antimicrobial peptide derived from human BPIFA1 protein protects against <i>Candida albicans</i> infection.","authors":"Nan Hu, Xi-Ming Mo, Shi-Na Xu, Hao-Neng Tang, Ying-Hui Zhou, Long Li, Hou-De Zhou","doi":"10.1177/17534259221080543","DOIUrl":null,"url":null,"abstract":"<p><p>Bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1) is an innate immunity defense protein. Our previous studies proved its antibacterial and antiviral effects, but its role in fungi remains unknown. The study aimed to identify antifungal peptides (AFP) derived from BPIFA1, and three antimicrobial peptides (AMP1-3) were designed. The antifungal effects were proved by growth inhibition assay. AMP3 activity was confirmed by germ tube growth experiment and XTT assay. Its effects on cell wall and membrane of <i>Candida albicans</i> were assessed by tannic acid and Annexin V-FITC/PI double staining, respectively. Additionally, scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used for morphological and ultrastructural observation. The expression of ALS1, EAP1, and SUN41 was tested by qPCR. Ultimately, three AMPs could fight against <i>C. albicans in vitro</i>, and AMP3 was highly effective. It functioned by destroying the integrity of cell wall and normal structure of cell membrane. It also inhibited biofilm formation of <i>C. albicans</i>. In addition, AMP3 down-regulated the expression of ALS1, EAP1, and SUN41, those are known to be involved in virulence of <i>C. albicans</i>. Altogether, the study reported successful development of a novel AFP, which could be used as a new strategy for antifungal therapy.</p>","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":"28 2","pages":"67-78"},"PeriodicalIF":2.8000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/70/6d/10.1177_17534259221080543.PMC9058375.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/17534259221080543","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1) is an innate immunity defense protein. Our previous studies proved its antibacterial and antiviral effects, but its role in fungi remains unknown. The study aimed to identify antifungal peptides (AFP) derived from BPIFA1, and three antimicrobial peptides (AMP1-3) were designed. The antifungal effects were proved by growth inhibition assay. AMP3 activity was confirmed by germ tube growth experiment and XTT assay. Its effects on cell wall and membrane of Candida albicans were assessed by tannic acid and Annexin V-FITC/PI double staining, respectively. Additionally, scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used for morphological and ultrastructural observation. The expression of ALS1, EAP1, and SUN41 was tested by qPCR. Ultimately, three AMPs could fight against C. albicans in vitro, and AMP3 was highly effective. It functioned by destroying the integrity of cell wall and normal structure of cell membrane. It also inhibited biofilm formation of C. albicans. In addition, AMP3 down-regulated the expression of ALS1, EAP1, and SUN41, those are known to be involved in virulence of C. albicans. Altogether, the study reported successful development of a novel AFP, which could be used as a new strategy for antifungal therapy.
期刊介绍:
Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.