Huifang Wang, Runhua Zhou, Fushan Xu, Kongjun Yang, Liuhai Zheng, Pan Zhao, Guangwei Shi, Lingyun Dai, Chengchao Xu, Le Yu, Zhijie Li, Jianhong Wang, Jigang Wang
{"title":"Beyond canonical PROTAC: biological targeted protein degradation (bioTPD).","authors":"Huifang Wang, Runhua Zhou, Fushan Xu, Kongjun Yang, Liuhai Zheng, Pan Zhao, Guangwei Shi, Lingyun Dai, Chengchao Xu, Le Yu, Zhijie Li, Jianhong Wang, Jigang Wang","doi":"10.1186/s40824-023-00385-8","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted protein degradation (TPD) is an emerging therapeutic strategy with the potential to modulate disease-associated proteins that have previously been considered undruggable, by employing the host destruction machinery. The exploration and discovery of cellular degradation pathways, including but not limited to proteasomes and lysosome pathways as well as their degraders, is an area of active research. Since the concept of proteolysis-targeting chimeras (PROTACs) was introduced in 2001, the paradigm of TPD has been greatly expanded and moved from academia to industry for clinical translation, with small-molecule TPD being particularly represented. As an indispensable part of TPD, biological TPD (bioTPD) technologies including peptide-, fusion protein-, antibody-, nucleic acid-based bioTPD and others have also emerged and undergone significant advancement in recent years, demonstrating unique and promising activities beyond those of conventional small-molecule TPD. In this review, we provide an overview of recent advances in bioTPD technologies, summarize their compositional features and potential applications, and briefly discuss their drawbacks. Moreover, we present some strategies to improve the delivery efficacy of bioTPD, addressing their challenges in further clinical development.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"72"},"PeriodicalIF":11.3000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362593/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40824-023-00385-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy with the potential to modulate disease-associated proteins that have previously been considered undruggable, by employing the host destruction machinery. The exploration and discovery of cellular degradation pathways, including but not limited to proteasomes and lysosome pathways as well as their degraders, is an area of active research. Since the concept of proteolysis-targeting chimeras (PROTACs) was introduced in 2001, the paradigm of TPD has been greatly expanded and moved from academia to industry for clinical translation, with small-molecule TPD being particularly represented. As an indispensable part of TPD, biological TPD (bioTPD) technologies including peptide-, fusion protein-, antibody-, nucleic acid-based bioTPD and others have also emerged and undergone significant advancement in recent years, demonstrating unique and promising activities beyond those of conventional small-molecule TPD. In this review, we provide an overview of recent advances in bioTPD technologies, summarize their compositional features and potential applications, and briefly discuss their drawbacks. Moreover, we present some strategies to improve the delivery efficacy of bioTPD, addressing their challenges in further clinical development.
期刊介绍:
Biomaterials Research, the official journal of the Korean Society for Biomaterials, is an open-access interdisciplinary publication that focuses on all aspects of biomaterials research. The journal covers a wide range of topics including novel biomaterials, advanced techniques for biomaterial synthesis and fabrication, and their application in biomedical fields. Specific areas of interest include functional biomaterials, drug and gene delivery systems, tissue engineering, nanomedicine, nano/micro-biotechnology, bio-imaging, regenerative medicine, medical devices, 3D printing, and stem cell research. By exploring these research areas, Biomaterials Research aims to provide valuable insights and promote advancements in the biomaterials field.