{"title":"Simulation of biochemical dynamics of [Formula: see text] and [Formula: see text] in fibroblast cell.","authors":"Ankit Kothiya, Neeru Adlakha","doi":"10.1007/s10863-023-09976-5","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium dynamics is not only responsible for maintaining the framework and functions of the cell but also plays a role in the dynamics of other biochemical systems in the cell. Phospholipase C-[Formula: see text] l ([Formula: see text]) has a crucial role in the function of fibroblast cells. Experiments have shown that [Formula: see text] and [Formula: see text] have interdependent dynamics in fibroblast cells. However, no reaction-diffusion model exists for the two-way feedback system dynamics of [Formula: see text] and [Formula: see text] in fibroblasts till date. The computational model is designed to investigate the impact of variations in several processes, such as the [Formula: see text] pump, buffer process, source inflow, etc., on the system dynamics of [Formula: see text] and [Formula: see text] in fibroblast cells. The computational findings are obtained using finite element techniques, and the consequences of dysregulation in various processes on the spatiotemporal calcium and [Formula: see text] dynamics in fibroblasts are investigated. The results lead to the conclusion that the effects of buffer, source influx, diffusion, and [Formula: see text] pump can cause fluctuations in the dynamics of [Formula: see text] and [Formula: see text] in fibroblasts. Disruptions in these constitutive processes can result in changes in the dynamics of calcium and [Formula: see text]. Thus, the current model provides new/novel information regarding the precise dysregulatory constitutive systems that regulate calcium and [Formula: see text] kinetics, such as source inflow, diffusion, [Formula: see text], and buffer, can be responsible for excessive calcium and [Formula: see text] concentrations leading to fibrotic illnesses such as cancer and fibrosis.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":"55 4","pages":"267-287"},"PeriodicalIF":2.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-023-09976-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
Calcium dynamics is not only responsible for maintaining the framework and functions of the cell but also plays a role in the dynamics of other biochemical systems in the cell. Phospholipase C-[Formula: see text] l ([Formula: see text]) has a crucial role in the function of fibroblast cells. Experiments have shown that [Formula: see text] and [Formula: see text] have interdependent dynamics in fibroblast cells. However, no reaction-diffusion model exists for the two-way feedback system dynamics of [Formula: see text] and [Formula: see text] in fibroblasts till date. The computational model is designed to investigate the impact of variations in several processes, such as the [Formula: see text] pump, buffer process, source inflow, etc., on the system dynamics of [Formula: see text] and [Formula: see text] in fibroblast cells. The computational findings are obtained using finite element techniques, and the consequences of dysregulation in various processes on the spatiotemporal calcium and [Formula: see text] dynamics in fibroblasts are investigated. The results lead to the conclusion that the effects of buffer, source influx, diffusion, and [Formula: see text] pump can cause fluctuations in the dynamics of [Formula: see text] and [Formula: see text] in fibroblasts. Disruptions in these constitutive processes can result in changes in the dynamics of calcium and [Formula: see text]. Thus, the current model provides new/novel information regarding the precise dysregulatory constitutive systems that regulate calcium and [Formula: see text] kinetics, such as source inflow, diffusion, [Formula: see text], and buffer, can be responsible for excessive calcium and [Formula: see text] concentrations leading to fibrotic illnesses such as cancer and fibrosis.
期刊介绍:
The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.