SFXN3 is Associated with Poor Clinical Outcomes and Sensitivity to the Hypomethylating Therapy in Non-M3 Acute Myeloid Leukemia Patients.

IF 3.8 4区 医学 Q2 GENETICS & HEREDITY
Yuxuan Dong, Fengbo Jin, Jing Wang, Qingsheng Li, Zhenqi Huang, Leiming Xia, Mingzhen Yang
{"title":"SFXN3 is Associated with Poor Clinical Outcomes and Sensitivity to the Hypomethylating Therapy in Non-M3 Acute Myeloid Leukemia Patients.","authors":"Yuxuan Dong, Fengbo Jin, Jing Wang, Qingsheng Li, Zhenqi Huang, Leiming Xia, Mingzhen Yang","doi":"10.2174/1566523223666230724121515","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>DNA hypermethylation plays a critical role in the occurrence and progression of acute myeloid leukemia (AML). The mitochondrial serine transporter, SFXN3, is vital for onecarbon metabolism and DNA methylation. However, the impact of SFXN3 on the occurrence and progression of AML has not been reported yet.</p><p><strong>Objective: </strong>In this study, we hypothesized that SFXN3 indicates a poor prognosis and suggested tailored treatment for AML patients.</p><p><strong>Methods: </strong>We used GEPIA and TCGA repository data to analyze the expression of SFXN3 and its correlation with survival in AML patients. RT-qPCR was used to detect the SFXN3 level in our enrolled AML patients and volunteers. Additionally, Whole Genome Bisulfite Sequencing (WGBS) was used to detect the genomic methylation level in individuals.</p><p><strong>Results: </strong>Through the TCGA and GEPIA databases, we found that SFXN3 was enriched in AML patients, predicting shorter survival. Furthermore, we confirmed that SFXN3 was primarily overexpressed in AML patients, especially non-M3 patients, and that high SFXN3 in non-M3 AML patients was found to be associated with poor outcomes and frequent blast cells. Interestingly, non-M3 AML patients with high SFXN3 levels who received hypomethylating therapy showed a higher CR ratio. Finally, we found that SFXN3 could promote DNA methylation at transcription start sites (TSS) in non-M3 AML patients. These sites were found to be clustered in multiple vital cell functions and frequently accompanied by mutations in DNMT3A and NPM1.</p><p><strong>Conclusion: </strong>In conclusion, SXFN3 plays an important role in the progression and hypermethylation in non-M3 AML patients and could be a potential biomarker for indicating a high CR rate for hypomethylating therapy.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":"410-418"},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1566523223666230724121515","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: DNA hypermethylation plays a critical role in the occurrence and progression of acute myeloid leukemia (AML). The mitochondrial serine transporter, SFXN3, is vital for onecarbon metabolism and DNA methylation. However, the impact of SFXN3 on the occurrence and progression of AML has not been reported yet.

Objective: In this study, we hypothesized that SFXN3 indicates a poor prognosis and suggested tailored treatment for AML patients.

Methods: We used GEPIA and TCGA repository data to analyze the expression of SFXN3 and its correlation with survival in AML patients. RT-qPCR was used to detect the SFXN3 level in our enrolled AML patients and volunteers. Additionally, Whole Genome Bisulfite Sequencing (WGBS) was used to detect the genomic methylation level in individuals.

Results: Through the TCGA and GEPIA databases, we found that SFXN3 was enriched in AML patients, predicting shorter survival. Furthermore, we confirmed that SFXN3 was primarily overexpressed in AML patients, especially non-M3 patients, and that high SFXN3 in non-M3 AML patients was found to be associated with poor outcomes and frequent blast cells. Interestingly, non-M3 AML patients with high SFXN3 levels who received hypomethylating therapy showed a higher CR ratio. Finally, we found that SFXN3 could promote DNA methylation at transcription start sites (TSS) in non-M3 AML patients. These sites were found to be clustered in multiple vital cell functions and frequently accompanied by mutations in DNMT3A and NPM1.

Conclusion: In conclusion, SXFN3 plays an important role in the progression and hypermethylation in non-M3 AML patients and could be a potential biomarker for indicating a high CR rate for hypomethylating therapy.

Abstract Image

Abstract Image

Abstract Image

SFXN3与非M3型急性髓细胞白血病患者的不良临床结果和对低甲基化治疗的敏感性有关。
背景:DNA超甲基化在急性髓细胞白血病(AML)的发生和发展中起着至关重要的作用。线粒体丝氨酸转运蛋白SFXN3对单碳代谢和DNA甲基化至关重要。然而,SFXN3对AML发生和发展的影响尚未报道。目的:在本研究中,我们假设SFXN3表示预后不良,并建议对AML患者进行量身定制的治疗。方法:我们使用GEPIA和TCGA库数据来分析SFXN3在AML患者中的表达及其与生存率的相关性。RT-qPCR用于检测我们招募的AML患者和志愿者中的SFXN3水平。此外,全基因组二硫化物测序(WGBS)用于检测个体的基因组甲基化水平。结果:通过TCGA和GEPIA数据库,我们发现SFXN3在AML患者中富集,预测生存期较短。此外,我们证实了SFXN3主要在AML患者中过表达,尤其是非M3患者,并且发现非M3 AML患者中的高SFXN3与不良结果和频繁的成纤维细胞有关。有趣的是,接受低甲基化治疗的SFXN3水平高的非M3 AML患者显示出更高的CR率。最后,我们发现SFXN3可以促进非M3 AML患者转录起始位点(TSS)的DNA甲基化。这些位点聚集在多种重要细胞功能中,并经常伴有DNMT3A和NPM1的突变。结论:总之,SXFN3在非M3 AML患者的进展和高甲基化中发挥着重要作用,可能是一种潜在的生物标志物,用于指示低甲基化治疗的高CR率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current gene therapy
Current gene therapy 医学-遗传学
CiteScore
6.70
自引率
2.80%
发文量
46
期刊介绍: Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases. Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信