Bo Zhang, Jianghua He, Jinxiang Hu, Prabhakar Chalise, Devin C Koestler
{"title":"Improving the accuracy and internal consistency of regression-based clustering of high-dimensional datasets.","authors":"Bo Zhang, Jianghua He, Jinxiang Hu, Prabhakar Chalise, Devin C Koestler","doi":"10.1515/sagmb-2022-0031","DOIUrl":null,"url":null,"abstract":"<p><p>Component-wise Sparse Mixture Regression (CSMR) is a recently proposed regression-based clustering method that shows promise in detecting heterogeneous relationships between molecular markers and a continuous phenotype of interest. However, CSMR can yield inconsistent results when applied to high-dimensional molecular data, which we hypothesize is in part due to inherent limitations associated with the feature selection method used in the CSMR algorithm. To assess this hypothesis, we explored whether substituting different regularized regression methods (i.e. Lasso, Elastic Net, Smoothly Clipped Absolute Deviation (SCAD), Minmax Convex Penalty (MCP), and Adaptive-Lasso) within the CSMR framework can improve the clustering accuracy and internal consistency (IC) of CSMR in high-dimensional settings. We calculated the true positive rate (TPR), true negative rate (TNR), IC and clustering accuracy of our proposed modifications, benchmarked against the existing CSMR algorithm, using an extensive set of simulation studies and real biological datasets. Our results demonstrated that substituting Adaptive-Lasso within the existing feature selection method used in CSMR led to significantly improved IC and clustering accuracy, with strong performance even in high-dimensional scenarios. In conclusion, our modifications of the CSMR method resulted in improved clustering performance and may thus serve as viable alternatives for the regression-based clustering of high-dimensional datasets.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2022-0031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Component-wise Sparse Mixture Regression (CSMR) is a recently proposed regression-based clustering method that shows promise in detecting heterogeneous relationships between molecular markers and a continuous phenotype of interest. However, CSMR can yield inconsistent results when applied to high-dimensional molecular data, which we hypothesize is in part due to inherent limitations associated with the feature selection method used in the CSMR algorithm. To assess this hypothesis, we explored whether substituting different regularized regression methods (i.e. Lasso, Elastic Net, Smoothly Clipped Absolute Deviation (SCAD), Minmax Convex Penalty (MCP), and Adaptive-Lasso) within the CSMR framework can improve the clustering accuracy and internal consistency (IC) of CSMR in high-dimensional settings. We calculated the true positive rate (TPR), true negative rate (TNR), IC and clustering accuracy of our proposed modifications, benchmarked against the existing CSMR algorithm, using an extensive set of simulation studies and real biological datasets. Our results demonstrated that substituting Adaptive-Lasso within the existing feature selection method used in CSMR led to significantly improved IC and clustering accuracy, with strong performance even in high-dimensional scenarios. In conclusion, our modifications of the CSMR method resulted in improved clustering performance and may thus serve as viable alternatives for the regression-based clustering of high-dimensional datasets.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.