Nicholas Theis, Jonathan Rubin, Joshua Cape, Satish Iyengar, Konasale M Prasad
{"title":"Threshold Selection for Brain Connectomes.","authors":"Nicholas Theis, Jonathan Rubin, Joshua Cape, Satish Iyengar, Konasale M Prasad","doi":"10.1089/brain.2022.0082","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Structural and functional brain connectomes represent macroscale data collected through techniques such as magnetic resonance imaging (MRI). Connectomes may contain noise that contributes to false-positive edges, thereby obscuring structure-function relationships and data interpretation. Thresholding procedures can be applied to reduce network density by removing low-signal edges, but there is limited consensus on appropriate selection of thresholds. This article compares existing thresholding methods and introduces a novel alternative \"objective function\" thresholding method. <b><i>Methods:</i></b> The performance of thresholding approaches, based on percolation and objective functions, is assessed by (1) computing the normalized mutual information (NMI) of community structure between a known network and a simulated, perturbed networks to which various forms of thresholding have been applied, and by (2) comparing the density and the clustering coefficient (CC) between the baseline and thresholded networks. An application to empirical data is provided. <b><i>Results:</i></b> Our proposed objective function-based threshold exhibits the best performance in terms of resulting in high similarity between the underlying networks and their perturbed, thresholded counterparts, as quantified by NMI and CC analysis on the simulated functional networks. <b><i>Discussion:</i></b> Existing network thresholding methods yield widely different results when graph metrics are subsequently computed. Thresholding based on the objective function maintains a set of edges such that the resulting network shares the community structure and clustering features present in the original network. This outcome provides a proof of principle that objective function thresholding could offer a useful approach to reducing the network density of functional connectivity data.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":"13 7","pages":"383-393"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517318/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2022.0082","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Structural and functional brain connectomes represent macroscale data collected through techniques such as magnetic resonance imaging (MRI). Connectomes may contain noise that contributes to false-positive edges, thereby obscuring structure-function relationships and data interpretation. Thresholding procedures can be applied to reduce network density by removing low-signal edges, but there is limited consensus on appropriate selection of thresholds. This article compares existing thresholding methods and introduces a novel alternative "objective function" thresholding method. Methods: The performance of thresholding approaches, based on percolation and objective functions, is assessed by (1) computing the normalized mutual information (NMI) of community structure between a known network and a simulated, perturbed networks to which various forms of thresholding have been applied, and by (2) comparing the density and the clustering coefficient (CC) between the baseline and thresholded networks. An application to empirical data is provided. Results: Our proposed objective function-based threshold exhibits the best performance in terms of resulting in high similarity between the underlying networks and their perturbed, thresholded counterparts, as quantified by NMI and CC analysis on the simulated functional networks. Discussion: Existing network thresholding methods yield widely different results when graph metrics are subsequently computed. Thresholding based on the objective function maintains a set of edges such that the resulting network shares the community structure and clustering features present in the original network. This outcome provides a proof of principle that objective function thresholding could offer a useful approach to reducing the network density of functional connectivity data.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.