Batch size: go big or go home? Counterintuitive improvement in medical autoencoders with smaller batch size.

Cailey I Kerley, Leon Y Cai, Yucheng Tang, Lori L Beason-Held, Susan M Resnick, Laurie E Cutting, Bennett A Landman
{"title":"Batch size: go big or go home? Counterintuitive improvement in medical autoencoders with smaller batch size.","authors":"Cailey I Kerley, Leon Y Cai, Yucheng Tang, Lori L Beason-Held, Susan M Resnick, Laurie E Cutting, Bennett A Landman","doi":"10.1117/12.2653643","DOIUrl":null,"url":null,"abstract":"<p><p>Batch size is a key hyperparameter in training deep learning models. Conventional wisdom suggests larger batches produce improved model performance. Here we present evidence to the contrary, particularly when using autoencoders to derive meaningful latent spaces from data with spatially global similarities and local differences, such as electronic health records (EHR) and medical imaging. We investigate batch size effects in both EHR data from the Baltimore Longitudinal Study of Aging and medical imaging data from the multimodal brain tumor segmentation (BraTS) challenge. We train fully connected and convolutional autoencoders to compress the EHR and imaging input spaces, respectively, into 32-dimensional latent spaces via reconstruction losses for various batch sizes between 1 and 100. Under the same hyperparameter configurations, smaller batches improve loss performance for both datasets. Additionally, latent spaces derived by autoencoders with smaller batches capture more biologically meaningful information. Qualitatively, we visualize 2-dimensional projections of the latent spaces and find that with smaller batches the EHR network better separates the sex of the individuals, and the imaging network better captures the right-left laterality of tumors. Quantitatively, the analogous sex classification and laterality regressions using the latent spaces demonstrate statistically significant improvements in performance at smaller batch sizes. Finally, we find improved individual variation locally in visualizations of representative data reconstructions at lower batch sizes. Taken together, these results suggest that smaller batch sizes should be considered when designing autoencoders to extract meaningful latent spaces among EHR and medical imaging data driven by global similarities and local variation.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12464 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353832/pdf/nihms-1858227.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2653643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Batch size is a key hyperparameter in training deep learning models. Conventional wisdom suggests larger batches produce improved model performance. Here we present evidence to the contrary, particularly when using autoencoders to derive meaningful latent spaces from data with spatially global similarities and local differences, such as electronic health records (EHR) and medical imaging. We investigate batch size effects in both EHR data from the Baltimore Longitudinal Study of Aging and medical imaging data from the multimodal brain tumor segmentation (BraTS) challenge. We train fully connected and convolutional autoencoders to compress the EHR and imaging input spaces, respectively, into 32-dimensional latent spaces via reconstruction losses for various batch sizes between 1 and 100. Under the same hyperparameter configurations, smaller batches improve loss performance for both datasets. Additionally, latent spaces derived by autoencoders with smaller batches capture more biologically meaningful information. Qualitatively, we visualize 2-dimensional projections of the latent spaces and find that with smaller batches the EHR network better separates the sex of the individuals, and the imaging network better captures the right-left laterality of tumors. Quantitatively, the analogous sex classification and laterality regressions using the latent spaces demonstrate statistically significant improvements in performance at smaller batch sizes. Finally, we find improved individual variation locally in visualizations of representative data reconstructions at lower batch sizes. Taken together, these results suggest that smaller batch sizes should be considered when designing autoencoders to extract meaningful latent spaces among EHR and medical imaging data driven by global similarities and local variation.

批量大小:要大还是要小?医疗自动编码器在较小批量下的反直觉改进
批量大小是训练深度学习模型的一个关键超参数。传统观点认为,批次越大,模型性能越好。在这里,我们提出了相反的证据,尤其是在使用自动编码器从具有空间全局相似性和局部差异性的数据(如电子健康记录(EHR)和医学成像)中导出有意义的潜在空间时。我们研究了巴尔的摩老龄化纵向研究(Baltimore Longitudinal Study of Aging)的电子病历数据和多模态脑肿瘤分割(BraTS)挑战赛的医学成像数据的批量大小效应。我们训练全连接自动编码器和卷积自动编码器,通过重建损失,将电子病历和成像输入空间分别压缩到 32 维潜在空间,批量大小在 1 到 100 之间。在相同的超参数配置下,较小的批次提高了两个数据集的损失性能。此外,使用较小批量的自动编码器得出的潜空间能捕捉到更多有生物意义的信息。在定性方面,我们对潜在空间的二维投影进行了可视化,发现在较小的批次下,EHR 网络能更好地分离个体的性别,而成像网络能更好地捕捉肿瘤的左右侧位。从数量上看,使用潜空间进行的类似性别分类和侧位回归在较小的批次规模下表现出显著的统计学改进。最后,我们发现在较小的批次规模下,代表性数据重建的可视化局部个体差异有所改善。综上所述,这些结果表明,在设计自动编码器以提取由全局相似性和局部变异驱动的 EHR 和医学影像数据中的有意义潜在空间时,应考虑较小的批次规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信