Cell-penetrating peptides predictors: A comparative analysis of methods and datasets.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL
Molecular Informatics Pub Date : 2023-11-01 Epub Date: 2023-09-06 DOI:10.1002/minf.202300104
Karen Guerrero-Vázquez, Gabriel Del Rio, Carlos A Brizuela
{"title":"Cell-penetrating peptides predictors: A comparative analysis of methods and datasets.","authors":"Karen Guerrero-Vázquez, Gabriel Del Rio, Carlos A Brizuela","doi":"10.1002/minf.202300104","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-Penetrating Peptides (CPP) are emerging as an alternative to small-molecule drugs to expand the range of biomolecules that can be targeted for therapeutic purposes. Due to the importance of identifying and designing new CPP, a great variety of predictors have been developed to achieve these goals. To establish a ranking for these predictors, a couple of recent studies compared their performances on specific datasets, yet their conclusions cannot determine if the ranking obtained is due to the model, the set of descriptors or the datasets used to test the predictors. We present a systematic study of the influence of the peptide sequence's similarity of the datasets on the predictors' performance. The analysis reveals that the datasets used for training have a stronger influence on the predictors performance than the model or descriptors employed. We show that datasets with low sequence similarity between the positive and negative examples can be easily separated, and the tested classifiers showed good performance on them. On the other hand, a dataset with high sequence similarity between CPP and non-CPP will be a hard dataset, and it should be the one to be used for assessing the performance of new predictors.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300104"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300104","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-Penetrating Peptides (CPP) are emerging as an alternative to small-molecule drugs to expand the range of biomolecules that can be targeted for therapeutic purposes. Due to the importance of identifying and designing new CPP, a great variety of predictors have been developed to achieve these goals. To establish a ranking for these predictors, a couple of recent studies compared their performances on specific datasets, yet their conclusions cannot determine if the ranking obtained is due to the model, the set of descriptors or the datasets used to test the predictors. We present a systematic study of the influence of the peptide sequence's similarity of the datasets on the predictors' performance. The analysis reveals that the datasets used for training have a stronger influence on the predictors performance than the model or descriptors employed. We show that datasets with low sequence similarity between the positive and negative examples can be easily separated, and the tested classifiers showed good performance on them. On the other hand, a dataset with high sequence similarity between CPP and non-CPP will be a hard dataset, and it should be the one to be used for assessing the performance of new predictors.

Abstract Image

细胞穿透多肽预测因子:方法和数据集的比较分析。
细胞穿透肽(CPP)正在成为小分子药物的替代品,以扩大可靶向治疗目的的生物分子范围。由于识别和设计新的CPP的重要性,已经开发了各种各样的预测器来实现这些目标。为了建立这些预测因子的排名,最近的一些研究比较了它们在特定数据集上的表现,但他们的结论无法确定所获得的排名是由于模型,描述符集还是用于测试预测因子的数据集。我们提出了一个系统的研究,肽序列的数据集的相似性对预测器的性能的影响。分析表明,用于训练的数据集比所使用的模型或描述符对预测器的性能有更大的影响。结果表明,正反样例序列相似度较低的数据集可以很容易地分离出来,并且所测试的分类器在这些数据集上表现出良好的性能。另一方面,在CPP和非CPP之间具有高序列相似性的数据集将是一个硬数据集,它应该用于评估新预测器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信