Impact of Clinical Study Implementation on Data Quality Assessments - Using Contradictions within Interdependent Health Data Items as a Pilot Indicator.

Q3 Health Professions
Khalid O Yusuf, Irina Chaplinskaya-Sobol, Anne Schoneberg, Sabine Hanss, Heike Valentin, Bettina Lorenz-Depiereux, Stefan Hansch, Karin Fiedler, Margarete Scherer, Shimita Sikdar, Olga Miljukov, Jens-Peter Reese, Patricia Wagner, Isabel Bröhl, Ramsia Geisler, Jörg J Vehreschild, Sabine Blaschke, Carla Bellinghausen, Milena Milovanovic, Dagmar Krefting
{"title":"Impact of Clinical Study Implementation on Data Quality Assessments - Using Contradictions within Interdependent Health Data Items as a Pilot Indicator.","authors":"Khalid O Yusuf,&nbsp;Irina Chaplinskaya-Sobol,&nbsp;Anne Schoneberg,&nbsp;Sabine Hanss,&nbsp;Heike Valentin,&nbsp;Bettina Lorenz-Depiereux,&nbsp;Stefan Hansch,&nbsp;Karin Fiedler,&nbsp;Margarete Scherer,&nbsp;Shimita Sikdar,&nbsp;Olga Miljukov,&nbsp;Jens-Peter Reese,&nbsp;Patricia Wagner,&nbsp;Isabel Bröhl,&nbsp;Ramsia Geisler,&nbsp;Jörg J Vehreschild,&nbsp;Sabine Blaschke,&nbsp;Carla Bellinghausen,&nbsp;Milena Milovanovic,&nbsp;Dagmar Krefting","doi":"10.3233/SHTI230707","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Contradiction is a relevant data quality indicator to evaluate the plausibility of interdependent health data items. However, while contradiction assessment is achieved using domain-established contradictory dependencies, recent studies have shown the necessity for additional requirements to reach conclusive contradiction findings. For example, the oral or rectal methods used in measuring the body temperature will influence the thresholds of fever definition. The availability of this required information as explicit data items must be guaranteed during study design. In this work, we investigate the impact of activities related to study database implementation on contradiction assessment from two perspectives including: 1) additionally required metadata and 2) implementation of checks within electronic case report forms to prevent contradictory data entries.</p><p><strong>Methods: </strong>Relevant information (timestamps, measurement methods, units, and interdependency rules) required for contradiction checks are identified. Scores are assigned to these parameters and two different studies are evaluated based on the fulfillment of the requirements by two selected interdependent data item sets.</p><p><strong>Results: </strong>None of the studies have fulfilled all requirements. While timestamps and measurement units are found, missing information about measurement methods may impede conclusive contradiction assessment. Implemented checks are only found if data are directly entered.</p><p><strong>Discussion: </strong>Conclusive contradiction assessment typically requires metadata in the context of captured data items. Consideration during study design and implementation of data capture systems may support better data quality in studies and could be further adopted in primary health information systems to enhance clinical anamnestic documentation.</p>","PeriodicalId":39242,"journal":{"name":"Studies in Health Technology and Informatics","volume":"307 ","pages":"152-158"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Health Technology and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI230707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Contradiction is a relevant data quality indicator to evaluate the plausibility of interdependent health data items. However, while contradiction assessment is achieved using domain-established contradictory dependencies, recent studies have shown the necessity for additional requirements to reach conclusive contradiction findings. For example, the oral or rectal methods used in measuring the body temperature will influence the thresholds of fever definition. The availability of this required information as explicit data items must be guaranteed during study design. In this work, we investigate the impact of activities related to study database implementation on contradiction assessment from two perspectives including: 1) additionally required metadata and 2) implementation of checks within electronic case report forms to prevent contradictory data entries.

Methods: Relevant information (timestamps, measurement methods, units, and interdependency rules) required for contradiction checks are identified. Scores are assigned to these parameters and two different studies are evaluated based on the fulfillment of the requirements by two selected interdependent data item sets.

Results: None of the studies have fulfilled all requirements. While timestamps and measurement units are found, missing information about measurement methods may impede conclusive contradiction assessment. Implemented checks are only found if data are directly entered.

Discussion: Conclusive contradiction assessment typically requires metadata in the context of captured data items. Consideration during study design and implementation of data capture systems may support better data quality in studies and could be further adopted in primary health information systems to enhance clinical anamnestic documentation.

临床研究实施对数据质量评估的影响——使用相互依赖的健康数据项目中的矛盾作为试点指标。
矛盾性是评价相互依存的卫生数据项目的合理性的相关数据质量指标。然而,虽然矛盾评估是使用领域建立的矛盾依赖来实现的,但最近的研究表明,需要额外的要求才能得出结论性的矛盾发现。例如,测量体温时使用的口腔或直肠方法会影响发烧定义的阈值。在研究设计期间,必须保证这些所需信息作为明确的数据项的可用性。在这项工作中,我们从两个角度调查了与研究数据库实施相关的活动对矛盾评估的影响,包括:1)额外需要的元数据和2)在电子病例报告表格中实施检查以防止矛盾的数据输入。方法:确定矛盾检查所需的相关信息(时间戳、度量方法、单位和相互依赖规则)。将分数分配给这些参数,并根据两个选定的相互依赖的数据项集对要求的满足情况对两个不同的研究进行评估。结果:没有一项研究满足所有要求。虽然找到了时间戳和测量单位,但测量方法的信息缺失可能会妨碍结论性的矛盾评估。只有在直接输入数据时才会发现已执行的检查。讨论:结论性矛盾评估通常需要捕获数据项上下文中的元数据。在研究设计和实施过程中考虑数据采集系统可以支持更好的研究数据质量,并可在初级卫生信息系统中进一步采用,以加强临床记忆记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Health Technology and Informatics
Studies in Health Technology and Informatics Health Professions-Health Information Management
CiteScore
1.20
自引率
0.00%
发文量
1463
期刊介绍: This book series was started in 1990 to promote research conducted under the auspices of the EC programmes’ Advanced Informatics in Medicine (AIM) and Biomedical and Health Research (BHR) bioengineering branch. A driving aspect of international health informatics is that telecommunication technology, rehabilitative technology, intelligent home technology and many other components are moving together and form one integrated world of information and communication media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信