Andre Thevapalan, Daan Apeldoorn, Gabriele Kern-Isberner, Ralf G Meyer, Mathias Nietzke, Torsten Panholzer
{"title":"Comparison and Incorporation of Reasoning and Learning Approaches for Cancer Therapy Research.","authors":"Andre Thevapalan, Daan Apeldoorn, Gabriele Kern-Isberner, Ralf G Meyer, Mathias Nietzke, Torsten Panholzer","doi":"10.3233/SHTI230709","DOIUrl":null,"url":null,"abstract":"<p><p>Representing knowledge in a comprehensible and maintainable way and transparently providing inferences thereof are important issues, especially in the context of applications related to artificial intelligence in medicine. This becomes even more obvious if the knowledge is dynamically growing and changing and when machine learning techniques are being involved. In this paper, we present an approach for representing knowledge about cancer therapies collected over two decades at St.-Johannes-Hospital in Dortmund, Germany. The presented approach makes use of InteKRator, a toolbox that combines knowledge representation and machine learning techniques, including the possibility of explaining inferences. An extended use of InteKRator's reasoning system will be introduced for being able to provide the required inferences. The presented approach is general enough to be transferred to other data, as well as to other domains. The approach will be evaluated, e. g., regarding comprehensibility, accuracy and reasoning efficiency.</p>","PeriodicalId":39242,"journal":{"name":"Studies in Health Technology and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Health Technology and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI230709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0
Abstract
Representing knowledge in a comprehensible and maintainable way and transparently providing inferences thereof are important issues, especially in the context of applications related to artificial intelligence in medicine. This becomes even more obvious if the knowledge is dynamically growing and changing and when machine learning techniques are being involved. In this paper, we present an approach for representing knowledge about cancer therapies collected over two decades at St.-Johannes-Hospital in Dortmund, Germany. The presented approach makes use of InteKRator, a toolbox that combines knowledge representation and machine learning techniques, including the possibility of explaining inferences. An extended use of InteKRator's reasoning system will be introduced for being able to provide the required inferences. The presented approach is general enough to be transferred to other data, as well as to other domains. The approach will be evaluated, e. g., regarding comprehensibility, accuracy and reasoning efficiency.
期刊介绍:
This book series was started in 1990 to promote research conducted under the auspices of the EC programmes’ Advanced Informatics in Medicine (AIM) and Biomedical and Health Research (BHR) bioengineering branch. A driving aspect of international health informatics is that telecommunication technology, rehabilitative technology, intelligent home technology and many other components are moving together and form one integrated world of information and communication media.