Neha Shukla, Shivani Kumari, Poornima Verma, Atar Singh Kushwah, Monisha Banarjee, S N Sankhwar, Aneesh Srivastava, M S Ansari, Naveen Kumar Gautam
{"title":"Genotypic Analysis of <i>COL4A1</i> Gene in Diabetic Nephropathy and Type 2 Diabetes Mellitus Patients: A Comparative Genetic Study.","authors":"Neha Shukla, Shivani Kumari, Poornima Verma, Atar Singh Kushwah, Monisha Banarjee, S N Sankhwar, Aneesh Srivastava, M S Ansari, Naveen Kumar Gautam","doi":"10.1089/dna.2023.0125","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is specified by microalbuminuria, glomerular lesions, and renal fibrosis leading to end-stage renal disease. The pathophysiology of DN is multifactorial as a result of gene-environment interaction. Clinical studies suggested that gene mutations affect various pathways involved in DN, including extracellular matrix (ECM). During chronic hyperglycemia, collagen type-4-mediated ECM overproduction occurs, leading to renal fibrosis and DN development. In this study, <i>COL4A1</i> gene variant rs605143 (G/A) was analyzed in diabetes and DN patients from the study population. We genotyped 386 study subjects, comprising 120 type 2 diabetes mellitus (T2DM) patients, 120 DN, and 146 healthy controls. All study subjects were analyzed for biochemical assays by commercially available kits and genotypic analysis by polymerase chain reaction-restriction fragment length polymorphism and confirmed by Sanger sequencing. Statistical analyses were done using SPSS and GraphPad. Anthroclinicopathological parameters showed a significant association between T2DM and DN. Genotype AA of <i>COL4A1</i> gene variant rs605143 (G/A) showed a significant association with T2DM and DN compared with controls with 5.87- and 8.01-folds risk, respectively. Mutant allele A also significantly associated with T2DM and DN independently compared with healthy controls with 2.29- and 2.81-time risk in the study population. This study's findings suggested that <i>COL4A1</i> gene variant rs605143 (G/A) can be used as predictive biomarkers for T2DM and DN independently. However, this gene variant needs to be analyzed in a large sample to explore the shared genetic association between T2DM and DN.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"42 9","pages":"541-547"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2023.0125","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic nephropathy (DN) is specified by microalbuminuria, glomerular lesions, and renal fibrosis leading to end-stage renal disease. The pathophysiology of DN is multifactorial as a result of gene-environment interaction. Clinical studies suggested that gene mutations affect various pathways involved in DN, including extracellular matrix (ECM). During chronic hyperglycemia, collagen type-4-mediated ECM overproduction occurs, leading to renal fibrosis and DN development. In this study, COL4A1 gene variant rs605143 (G/A) was analyzed in diabetes and DN patients from the study population. We genotyped 386 study subjects, comprising 120 type 2 diabetes mellitus (T2DM) patients, 120 DN, and 146 healthy controls. All study subjects were analyzed for biochemical assays by commercially available kits and genotypic analysis by polymerase chain reaction-restriction fragment length polymorphism and confirmed by Sanger sequencing. Statistical analyses were done using SPSS and GraphPad. Anthroclinicopathological parameters showed a significant association between T2DM and DN. Genotype AA of COL4A1 gene variant rs605143 (G/A) showed a significant association with T2DM and DN compared with controls with 5.87- and 8.01-folds risk, respectively. Mutant allele A also significantly associated with T2DM and DN independently compared with healthy controls with 2.29- and 2.81-time risk in the study population. This study's findings suggested that COL4A1 gene variant rs605143 (G/A) can be used as predictive biomarkers for T2DM and DN independently. However, this gene variant needs to be analyzed in a large sample to explore the shared genetic association between T2DM and DN.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.