Genotypic Analysis of COL4A1 Gene in Diabetic Nephropathy and Type 2 Diabetes Mellitus Patients: A Comparative Genetic Study.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Neha Shukla, Shivani Kumari, Poornima Verma, Atar Singh Kushwah, Monisha Banarjee, S N Sankhwar, Aneesh Srivastava, M S Ansari, Naveen Kumar Gautam
{"title":"Genotypic Analysis of <i>COL4A1</i> Gene in Diabetic Nephropathy and Type 2 Diabetes Mellitus Patients: A Comparative Genetic Study.","authors":"Neha Shukla,&nbsp;Shivani Kumari,&nbsp;Poornima Verma,&nbsp;Atar Singh Kushwah,&nbsp;Monisha Banarjee,&nbsp;S N Sankhwar,&nbsp;Aneesh Srivastava,&nbsp;M S Ansari,&nbsp;Naveen Kumar Gautam","doi":"10.1089/dna.2023.0125","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is specified by microalbuminuria, glomerular lesions, and renal fibrosis leading to end-stage renal disease. The pathophysiology of DN is multifactorial as a result of gene-environment interaction. Clinical studies suggested that gene mutations affect various pathways involved in DN, including extracellular matrix (ECM). During chronic hyperglycemia, collagen type-4-mediated ECM overproduction occurs, leading to renal fibrosis and DN development. In this study, <i>COL4A1</i> gene variant rs605143 (G/A) was analyzed in diabetes and DN patients from the study population. We genotyped 386 study subjects, comprising 120 type 2 diabetes mellitus (T2DM) patients, 120 DN, and 146 healthy controls. All study subjects were analyzed for biochemical assays by commercially available kits and genotypic analysis by polymerase chain reaction-restriction fragment length polymorphism and confirmed by Sanger sequencing. Statistical analyses were done using SPSS and GraphPad. Anthroclinicopathological parameters showed a significant association between T2DM and DN. Genotype AA of <i>COL4A1</i> gene variant rs605143 (G/A) showed a significant association with T2DM and DN compared with controls with 5.87- and 8.01-folds risk, respectively. Mutant allele A also significantly associated with T2DM and DN independently compared with healthy controls with 2.29- and 2.81-time risk in the study population. This study's findings suggested that <i>COL4A1</i> gene variant rs605143 (G/A) can be used as predictive biomarkers for T2DM and DN independently. However, this gene variant needs to be analyzed in a large sample to explore the shared genetic association between T2DM and DN.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2023.0125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic nephropathy (DN) is specified by microalbuminuria, glomerular lesions, and renal fibrosis leading to end-stage renal disease. The pathophysiology of DN is multifactorial as a result of gene-environment interaction. Clinical studies suggested that gene mutations affect various pathways involved in DN, including extracellular matrix (ECM). During chronic hyperglycemia, collagen type-4-mediated ECM overproduction occurs, leading to renal fibrosis and DN development. In this study, COL4A1 gene variant rs605143 (G/A) was analyzed in diabetes and DN patients from the study population. We genotyped 386 study subjects, comprising 120 type 2 diabetes mellitus (T2DM) patients, 120 DN, and 146 healthy controls. All study subjects were analyzed for biochemical assays by commercially available kits and genotypic analysis by polymerase chain reaction-restriction fragment length polymorphism and confirmed by Sanger sequencing. Statistical analyses were done using SPSS and GraphPad. Anthroclinicopathological parameters showed a significant association between T2DM and DN. Genotype AA of COL4A1 gene variant rs605143 (G/A) showed a significant association with T2DM and DN compared with controls with 5.87- and 8.01-folds risk, respectively. Mutant allele A also significantly associated with T2DM and DN independently compared with healthy controls with 2.29- and 2.81-time risk in the study population. This study's findings suggested that COL4A1 gene variant rs605143 (G/A) can be used as predictive biomarkers for T2DM and DN independently. However, this gene variant needs to be analyzed in a large sample to explore the shared genetic association between T2DM and DN.

糖尿病肾病和2型糖尿病患者COL4A1基因的基因型分析:一项比较遗传学研究
糖尿病肾病(DN)是由微量白蛋白尿、肾小球病变和肾纤维化导致终末期肾脏疾病所确定的。DN的病理生理是多因素的,是基因与环境相互作用的结果。临床研究表明,基因突变影响DN涉及的多种途径,包括细胞外基质(ECM)。在慢性高血糖期间,4型胶原介导的ECM过度产生,导致肾纤维化和DN的发展。本研究分析了研究人群中糖尿病和DN患者的COL4A1基因变异rs605143 (G/A)。我们对386名研究对象进行了基因分型,其中包括120名2型糖尿病(T2DM)患者,120名DN和146名健康对照。所有研究对象采用市售试剂盒进行生化分析,采用聚合酶链反应-限制性片段长度多态性进行基因型分析,并通过Sanger测序进行确认。采用SPSS和GraphPad进行统计分析。人类临床病理参数显示T2DM与DN有显著相关性。与对照组相比,COL4A1基因变异rs605143 (G/A) AA型与T2DM和DN有显著相关性,风险分别为5.87倍和8.01倍。与健康对照相比,突变等位基因A与T2DM和DN独立相关,风险分别为2.29倍和2.81倍。本研究结果提示COL4A1基因变异rs605143 (G/A)可独立作为T2DM和DN的预测生物标志物。然而,该基因变异需要在大样本中进行分析,以探索T2DM和DN之间的共同遗传关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信