Samira Shahraki, Sara Hosseinian, Elham Shahraki, Mehdi Kheirandish, Abolfazl Khajavirad
{"title":"Effects of Dichloromethane and N-Butanol Fractions of <i>Nigella sativa</i> on ACHN and GP-293 Cell Line Morphology, Viability, and Apoptosis.","authors":"Samira Shahraki, Sara Hosseinian, Elham Shahraki, Mehdi Kheirandish, Abolfazl Khajavirad","doi":"10.4103/abr.abr_394_22","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Renal cell carcinoma (RCC) is among the top death-causing cancers. Medicinal herbs can also have beneficial effects on RCC treatment. In this project, we aimed to study the antitumor effect of dichloromethane and N-butanol fractions of hydroalcoholic extract of <i>Nigella sativa (N. sativa)</i> on the morphology, viability, and apoptosis of ACHN (human renal adenocarcinoma) and GP-293 (normal renal epithelial) cell lines.</p><p><strong>Materials and methods: </strong>In this experimental study, N-butanol and dichloromethane fractions of <i>N. sativa</i> were obtained, and ACHN and GP293 cell lines were treated with various concentrations of dichloromethane (0-100 μg/mL) and N-butanol (0-12.5 μg/mL) fractions for 24, 48, and 72 hours. Then, morphological changes, viability, and apoptosis were investigated.</p><p><strong>Results: </strong>Our results indicated that dichloromethane and N-butanol fractions cause morphological changes and significant decreases in the percentage of live cells in the ACHN cell line, in a dose- and time-dependent manner. In the GP-293 cell line, however, a lower toxicity was observed in comparison with that found for ACHN. The results of flow cytometry showed an apoptotic effect of dichloromethane and N-butanol fractions on the ACHN cell line but a higher rate of apoptosis induction for the total extract compared to the two fractions in the renal cancer cell line compared to the normal cell line.</p><p><strong>Conclusion: </strong>Our findings demonstrated that these two fractions of <i>N. sativa</i> induce inhibitory effects on the ACHN cell line morphology and viability. These effects were lower than those induced by the total extract. In addition, the two fractions caused more marked effects in the renal cancer cell line compared with the GP-293 cell line.</p>","PeriodicalId":7225,"journal":{"name":"Advanced Biomedical Research","volume":"12 ","pages":"200"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fe/71/ABR-12-200.PMC10492620.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Biomedical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/abr.abr_394_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Renal cell carcinoma (RCC) is among the top death-causing cancers. Medicinal herbs can also have beneficial effects on RCC treatment. In this project, we aimed to study the antitumor effect of dichloromethane and N-butanol fractions of hydroalcoholic extract of Nigella sativa (N. sativa) on the morphology, viability, and apoptosis of ACHN (human renal adenocarcinoma) and GP-293 (normal renal epithelial) cell lines.
Materials and methods: In this experimental study, N-butanol and dichloromethane fractions of N. sativa were obtained, and ACHN and GP293 cell lines were treated with various concentrations of dichloromethane (0-100 μg/mL) and N-butanol (0-12.5 μg/mL) fractions for 24, 48, and 72 hours. Then, morphological changes, viability, and apoptosis were investigated.
Results: Our results indicated that dichloromethane and N-butanol fractions cause morphological changes and significant decreases in the percentage of live cells in the ACHN cell line, in a dose- and time-dependent manner. In the GP-293 cell line, however, a lower toxicity was observed in comparison with that found for ACHN. The results of flow cytometry showed an apoptotic effect of dichloromethane and N-butanol fractions on the ACHN cell line but a higher rate of apoptosis induction for the total extract compared to the two fractions in the renal cancer cell line compared to the normal cell line.
Conclusion: Our findings demonstrated that these two fractions of N. sativa induce inhibitory effects on the ACHN cell line morphology and viability. These effects were lower than those induced by the total extract. In addition, the two fractions caused more marked effects in the renal cancer cell line compared with the GP-293 cell line.