Universal calcium fluctuations inHydramorphogenesis.

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Oded Agam, Erez Braun
{"title":"Universal calcium fluctuations in<i>Hydra</i>morphogenesis.","authors":"Oded Agam,&nbsp;Erez Braun","doi":"10.1088/1478-3975/acf8a4","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the collective physical processes that drive robust morphological transitions in animal development necessitates the characterization of the relevant fields involved in morphogenesis. Calcium (Ca<sup>2+</sup>) is recognized as one such field. In this study, we demonstrate that the spatial fluctuations of Ca<sup>2+</sup>during<i>Hydra</i>regeneration exhibit universal characteristics. To investigate this phenomenon, we employ two distinct controls, an external electric field and<i>heptanol</i>, a gap junction-blocking drug. Both lead to the modulation of the Ca<sup>2+</sup>activity and a reversible halting of the regeneration process. The application of an electric field enhances Ca<sup>2+</sup>activity in the<i>Hydra</i>'s tissue and increases its spatial correlations, while the administration of<i>heptanol</i>inhibits its activity and diminishes the spatial correlations. Remarkably, the statistical characteristics of Ca<sup>2+</sup>spatial fluctuations, including the coefficient of variation and skewness, manifest universal shape distributions across tissue samples and conditions. We introduce a field-theoretic model, describing fluctuations in a tilted double-well potential, which successfully captures these universal properties. Moreover, our analysis reveals that the Ca<sup>2+</sup>activity is spatially localized, and the<i>Hydra</i>'s tissue operates near the onset of bistability, where the local Ca<sup>2+</sup>activity fluctuates between low and high excited states in distinct regions. These findings highlight the prominent role of the Ca<sup>2+</sup>field in<i>Hydra</i>morphogenesis and provide insights into the underlying mechanisms governing robust morphological transitions.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/acf8a4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Understanding the collective physical processes that drive robust morphological transitions in animal development necessitates the characterization of the relevant fields involved in morphogenesis. Calcium (Ca2+) is recognized as one such field. In this study, we demonstrate that the spatial fluctuations of Ca2+duringHydraregeneration exhibit universal characteristics. To investigate this phenomenon, we employ two distinct controls, an external electric field andheptanol, a gap junction-blocking drug. Both lead to the modulation of the Ca2+activity and a reversible halting of the regeneration process. The application of an electric field enhances Ca2+activity in theHydra's tissue and increases its spatial correlations, while the administration ofheptanolinhibits its activity and diminishes the spatial correlations. Remarkably, the statistical characteristics of Ca2+spatial fluctuations, including the coefficient of variation and skewness, manifest universal shape distributions across tissue samples and conditions. We introduce a field-theoretic model, describing fluctuations in a tilted double-well potential, which successfully captures these universal properties. Moreover, our analysis reveals that the Ca2+activity is spatially localized, and theHydra's tissue operates near the onset of bistability, where the local Ca2+activity fluctuates between low and high excited states in distinct regions. These findings highlight the prominent role of the Ca2+field inHydramorphogenesis and provide insights into the underlying mechanisms governing robust morphological transitions.

水合形态发生中普遍存在的钙波动。
了解驱动动物发育中强有力的形态转变的集体物理过程,需要对形态发生中涉及的相关领域进行表征。钙(Ca2+)被认为是这样一个领域。在这项研究中,我们证明了水合再生过程中Ca2+的空间波动具有普遍性。为了研究这种现象,我们采用了两种不同的对照,一种是外部电场,另一种是庚醇,一种间隙连接阻断药物。两者都导致Ca2+活性的调节和再生过程的可逆停止。电场的施加增强了水螅组织中Ca2+的活性并增加了其空间相关性,而给予类毒素抑制了其活性并减少了空间相关性。值得注意的是,Ca2+空间波动的统计特征,包括变异系数和偏度,在组织样本和条件下表现出普遍的形状分布。我们介绍了一个场论模型,描述了倾斜双阱势的波动,它成功地捕捉到了这些普遍性质。此外,我们的分析表明,Ca2+活性在空间上是局部化的,Hydra组织在双稳态开始附近工作,在双稳态中,局部Ca2+活性会在不同区域的低激发态和高激发态之间波动。这些发现突出了Ca2+场在水合形态发生中的突出作用,并为控制强大形态转变的潜在机制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信