S. Pushpam, S. Christopher Jeyaseelan, R. Jesintha Rani, Shamima Hussain, A. Milton Franklin Benial
{"title":"Spectroscopic, quantum chemical investigation and molecular docking studies on N-(2-benzoylamino) phenyl benzamide: A novel SARS-CoV-2 drug","authors":"S. Pushpam, S. Christopher Jeyaseelan, R. Jesintha Rani, Shamima Hussain, A. Milton Franklin Benial","doi":"10.1002/jmr.3057","DOIUrl":null,"url":null,"abstract":"<p>The present work describes the structural and spectral properties of N-(2-benzoylamino) phenyl benzamide (NBPB). The geometrical parameters of NBPB molecule such as bond lengths, bond angles and dihedral angles are calculated and compared with experimental values. The assigned vibrational wave numbers are in good agreement with the experimental FTIR and FT Raman spectra. The vibrational frequency of C=O stretching was downshifted to a lower wave number (red shift) due to mesomeric effect. The UV–Vis spectrum of the title compound was simulated and validated experimentally. The energy gap and charge transfer interaction of the title molecule were studied using frontier molecular orbital analysis. The electrophilic and nucleophilic reactivity sites of NBPB were investigated through the analysis of the molecular electrostatic potential surface and the Fukui function. An assessment of the intramolecular stabilization interactions of the molecule was performed using natural bond orbital analysis. The drug-likeness parameter was calculated. To investigate the inhibitory potential of the molecule, molecular docking analysis was conducted against SARS-CoV-2 proteins, revealing its capability to serve as a novel inhibitor against SARS-CoV-2. The high binding affinity of NBPB molecule was due to the presence of hydrogen bonds along with different hydrophobic interactions between the drug and the SARS-CoV-2 protein receptor. Hence, the title molecule is identified to be a potential candidate for SARS-CoV-2.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3057","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present work describes the structural and spectral properties of N-(2-benzoylamino) phenyl benzamide (NBPB). The geometrical parameters of NBPB molecule such as bond lengths, bond angles and dihedral angles are calculated and compared with experimental values. The assigned vibrational wave numbers are in good agreement with the experimental FTIR and FT Raman spectra. The vibrational frequency of C=O stretching was downshifted to a lower wave number (red shift) due to mesomeric effect. The UV–Vis spectrum of the title compound was simulated and validated experimentally. The energy gap and charge transfer interaction of the title molecule were studied using frontier molecular orbital analysis. The electrophilic and nucleophilic reactivity sites of NBPB were investigated through the analysis of the molecular electrostatic potential surface and the Fukui function. An assessment of the intramolecular stabilization interactions of the molecule was performed using natural bond orbital analysis. The drug-likeness parameter was calculated. To investigate the inhibitory potential of the molecule, molecular docking analysis was conducted against SARS-CoV-2 proteins, revealing its capability to serve as a novel inhibitor against SARS-CoV-2. The high binding affinity of NBPB molecule was due to the presence of hydrogen bonds along with different hydrophobic interactions between the drug and the SARS-CoV-2 protein receptor. Hence, the title molecule is identified to be a potential candidate for SARS-CoV-2.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.